ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2015-08-14
    Description: We study the effect of mergers on the morphology of galaxies by means of the simulated merger tree approach first proposed by Moster et al. This method combines N -body cosmological simulations and semi-analytic techniques to extract realistic initial conditions for galaxy mergers. These are then evolved using high-resolution hydrodynamical simulations, which include dark matter, stars, cold gas in the disc and hot gas in the halo. We show that the satellite mass accretion is not as effective as previously thought, as there is substantial stellar stripping before the final merger. The fraction of stellar disc mass transferred to the bulge is quite low, even in the case of a major merger, mainly due to the dispersion of part of the stellar disc mass into the halo. We confirm the findings of Hopkins et al., that a gas-rich disc is able to survive major mergers more efficiently. The enhanced star formation associated with the merger is not localized to the bulge of galaxy, but a substantial fraction takes place in the disc too. The inclusion of the hot gas reservoir in the galaxy model contributes to reducing the efficiency of bulge formation. Overall, our findings suggest that mergers are not as efficient as previously thought in transforming discs into bulges. This possibly alleviates some of the tensions between observations of bulgeless galaxies and the hierarchical scenario for structure formation.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-16
    Description: Recent inspections of local available data suggest that the almost linear relation between the stellar mass of spheroids ( M sph ) and the mass of the super massive black holes (BHs), residing at their centres, shows a break below M sph  ~ 10 10 M , with a steeper, about quadratic relation at smaller masses. We investigate the physical mechanisms responsible for the change in slope of this relation, by comparing data with the results of the semi-analytic model of galaxy formation morgana , which already predicted such a break in its original formulation. We find that the change of slope is mostly induced by effective stellar feedback in star-forming bulges. The shape of the relation is instead quite insensitive to other physical mechanisms connected to BH accretion such as disc instabilities, galaxy mergers, active galactic nucleus (AGN) feedback, or even the exact modelling of accretion on to the BH, direct or through a reservoir of low angular momentum gas. Our results support a scenario where most stars form in the disc component of galaxies and are carried to bulges through mergers and disc instabilities, while accretion on to BHs is connected to star formation in the spheroidal component. Therefore, a model of stellar feedback that produces stronger outflows in star-forming bulges than in discs will naturally produce a break in the scaling relation. Our results point to a form of co-evolution especially at lower masses, below the putative break, mainly driven by stellar feedback rather than AGN feedback.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-27
    Description: Recent inspections of local available data suggest that the almost linear relation between the stellar mass of spheroids ( M sph ) and the mass of the super massive black holes (BHs), residing at their centres, shows a break below M sph  ~ 10 10 M , with a steeper, about quadratic relation at smaller masses. We investigate the physical mechanisms responsible for the change in slope of this relation, by comparing data with the results of the semi-analytic model of galaxy formation morgana , which already predicted such a break in its original formulation. We find that the change of slope is mostly induced by effective stellar feedback in star-forming bulges. The shape of the relation is instead quite insensitive to other physical mechanisms connected to BH accretion such as disc instabilities, galaxy mergers, active galactic nucleus (AGN) feedback, or even the exact modelling of accretion on to the BH, direct or through a reservoir of low angular momentum gas. Our results support a scenario where most stars form in the disc component of galaxies and are carried to bulges through mergers and disc instabilities, while accretion on to BHs is connected to star formation in the spheroidal component. Therefore, a model of stellar feedback that produces stronger outflows in star-forming bulges than in discs will naturally produce a break in the scaling relation. Our results point to a form of co-evolution especially at lower masses, below the putative break, mainly driven by stellar feedback rather than AGN feedback.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-07-09
    Description: One major problem of current theoretical models of galaxy formation is given by their inability to reproduce the apparently ‘anti-hierarchical’ evolution of galaxy assembly: massive galaxies appear to be in place since z  ~ 3, while a significant increase of the number densities of low-mass galaxies is measured with decreasing redshift. In this work, we perform a systematic analysis of the influence of different stellar feedback schemes, carried out in the framework of gaea , a new semi-analytic model of galaxy formation. It includes a self-consistent treatment for the timings of gas, metal and energy recycling, and for the chemical yields. We show this to be crucial to use observational measurements of the metallicity as independent and powerful constraints for the adopted feedback schemes. The observed trends can be reproduced in the framework of either a strong ejective or preventive feedback model. In the former case, the gas ejection rate must decrease significantly with cosmic time (as suggested by parametrizations of the cosmological ‘FIRE’ simulations). Irrespective of the feedback scheme used, our successful models always imply that up to 60–70 per cent of the baryons reside in an ‘ejected’ reservoir and are unavailable for cooling at high redshift. The same schemes predict physical properties of model galaxies (e.g. gas content, colour, age, and metallicity) that are in much better agreement with observational data than our fiducial model. The overall fraction of passive galaxies is found to be primarily determined by internal physical processes, with environment playing a secondary role.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-06-20
    Description: The distribution of galaxy morphological types is a key test for models of galaxy formation and evolution, providing strong constraints on the relative contribution of different physical processes responsible for the growth of the spheroidal components. In this paper, we make use of a suite of semi-analytic models to study the efficiency of galaxy mergers in disrupting galaxy discs and building galaxy bulges. In particular, we compare standard prescriptions usually adopted in semi-analytic models, with new prescriptions proposed by Kannan et al., based on results from high-resolution hydrodynamical simulations, and we show that these new implementations reduce the efficiency of bulge formation through mergers. In addition, we compare our model results with a variety of observational measurements of the fraction of spheroid-dominated galaxies as a function of stellar and halo mass, showing that the present uncertainties in the data represent an important limitation to our understanding of spheroid formation. Our results indicate that the main tension between theoretical models and observations does not stem from the survival of purely disc structures (i.e. bulgeless galaxies), rather from the distribution of galaxies of different morphological types, as a function of their stellar mass.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-06-27
    Description: We present a direct comparison between the observed star formation rate functions (SFRFs) and the state-of-the-art predictions of semi-analytic models (SAMs) of galaxy formation and evolution. We use the PACS Evolutionary Probe Survey and Herschel Multi-tiered Extragalactic Survey data sets in the COSMOS and GOODS-South fields, combined with broad-band photometry from UV to sub-mm, to obtain total (IR+UV) instantaneous star formation rates (SFRs) for individual Herschel galaxies up to z  ~ 4, subtracted of possible active galactic nucleus (AGN) contamination. The comparison with model predictions shows that SAMs broadly reproduce the observed SFRFs up to z  ~ 2, when the observational errors on the SFR are taken into account. However, all the models seem to underpredict the bright end of the SFRF at z   2. The cause of this underprediction could lie in an improper modelling of several model ingredients, like too strong (AGN or stellar) feedback in the brighter objects or too low fallback of gas, caused by weak feedback and outflows at earlier epochs.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-01-21
    Description: The constraints on neutrino masses led to the revision of their cosmological role, since the existence of a cosmological neutrino background is a clear prediction of the standard cosmological model. In this paper, we study the impact of such background on the spatial distribution of both dark matter (DM) and galaxies, by coupling N -body numerical simulations with semi-analytic models (SAMs) of galaxy formation. Cosmological simulations including massive neutrinos predict a slower evolution of DM perturbations with respect to the cold dark matter (CDM) runs with the same initial conditions and a suppression on the matter power spectrum on small and intermediate scales, thus impacting on the predicted properties of galaxy populations. We explicitly show that most of these deviations are driven by the different 8 predicted for cosmologies including a massive neutrino background. We conclude that independent estimates of 8 are needed, in order to unambiguously characterize the effect of this background on the growth of structures. Galaxy properties alone are a weak tracer of deviations with respect to the CDM run, but their combination with the overall matter distribution at all scales allows us to disentangle between different cosmological models. Moreover, these deviations go on opposite directions with respect to competing models such as modified gravity, thus weakening any detectable cosmological signal. Given the ubiquitous presence of a neutrino background, these effects have to be taken into account in future missions aimed at constraining the properties of the ‘Dark’ components of the Universe.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-07-12
    Description: Among the possible alternatives to the standard cosmological model (CDM), coupled dark energy models postulate that dark energy (DE), seen as a dynamical scalar field, may interact with dark matter (DM), giving rise to a ‘fifth-force’, felt by DM particles only. In this paper, we study the impact of these cosmologies on the statistical properties of galaxy populations by combining high-resolution numerical simulations with semi-analytic models (SAMs) of galaxy formation and evolution. New features have been implemented in the reference SAM in order to have it run self-consistently and calibrated on these cosmological simulations. They include an appropriate modification of the mass–temperature relation and of the baryon fraction in DM haloes, due to the different virial scalings and to the gravitational bias, respectively. Our results show that the predictions of our coupled-DE SAM do not differ significantly from theoretical predictions obtained with standard SAMs applied to a reference cold dark matter (CDM) simulation, implying that the statistical properties of galaxies provide only a weak probe for these alternative cosmological models. On the other hand, we show that both galaxy bias and the galaxy pairwise velocity distribution are sensitive to coupled DE models: this implies that these probes might be successfully applied to disentangle among quintessence, f ( R )–gravity and coupled DE models.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-07-02
    Description: We present a comparison of 14 galaxy formation models: 12 different semi-analytical models and 2 halo occupation distribution models for galaxy formation based upon the same cosmological simulation and merger tree information derived from it. The participating codes have proven to be very successful in their own right but they have all been calibrated independently using various observational data sets, stellar models, and merger trees. In this paper, we apply them without recalibration and this leads to a wide variety of predictions for the stellar mass function, specific star formation rates, stellar-to-halo mass ratios, and the abundance of orphan galaxies. The scatter is much larger than seen in previous comparison studies primarily because the codes have been used outside of their native environment within which they are well tested and calibrated. The purpose of the ‘nIFTy comparison of galaxy formation models’ is to bring together as many different galaxy formation modellers as possible and to investigate a common approach to model calibration. This paper provides a unified description for all participating models and presents the initial, uncalibrated comparison as a baseline for our future studies where we will develop a common calibration framework and address the extent to which that reduces the scatter in the model predictions seen here.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-12-03
    Description: A well-calibrated method to describe the environment of galaxies at all redshifts is essential for the study of structure formation. Such a calibration should include well-understood correlations with halo mass, and the possibility to identify galaxies which dominate their potential well (centrals), and their satellites. Focusing on z  ~ 1 and 2, we propose a method of environmental calibration which can be applied to the next generation of low- to medium-resolution spectroscopic surveys. Using an up-to-date semi-analytic model of galaxy formation, we measure the local density of galaxies in fixed apertures on different scales. There is a clear correlation of density with halo mass for satellite galaxies, while a significant population of low-mass centrals is found at high densities in the neighbourhood of massive haloes. In this case, the density simply traces the mass of the most massive halo within the aperture. To identify central and satellite galaxies, we apply an observationally motivated stellar mass rank method which is both highly pure and complete, especially in the more massive haloes where such a division is most meaningful. Finally, we examine a test case for the recovery of environmental trends: the passive fraction of galaxies and its dependence on stellar and halo mass for centrals and satellites. With careful calibration, observationally defined quantities do a good job of recovering known trends in the model. This result stands even with reduced redshift accuracy, provided the sample is deep enough to preserve a wide dynamic range of density.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...