ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: The Rake Airflow Gage Experiment was flown on the Propulsion Flight Test Fixture at NASA Dryden Flight Research Center using one of Dryden s F-15B research testbed aircraft. Propulsion Flight Test Fixture is a modular, pylon-based platform for flight testing propulsion system components, such as the Channeled Centerbody Inlet Experiment, an innovative, variable-geometry, mixed compression supersonic inlet under development at NASA Dryden. The objective of this flight test was to ascertain the flowfield angularity and local Mach number profile of the aerodynamic interface plane that is defined by the planned location of the tip of the inlet centerbody. Knowledge of the flowfield characteristics at this location underneath will be essential to computational modeling of the new inlet as well as future propulsion systems flight testing using the test fixture. This paper describes the preparation for and execution of the flight test, as well as results and validation of the algorithm used to calculate local Mach number and angularity from the rake's pressure measurements.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-928 , 27th AIAA Applied Aerodynamics Conference; Jun 22, 2009 - Jun 25, 2009; San Antonio, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: The Propulsion Flight Test Fixture (PFTF) system at NASA Dryden Flight Research Center (DFRC) provides an innovative and cost effective method of flight testing advanced propulsion concepts and components in a relevant environment using DFRC's F-15B #836. The PFTF attaches to the centerline pylon of the aircraft and Has an integrated 6 axis force balance for flight testing of propulsion experiments The PTFF has undergone two previous flight validation test phases: (1)The Local Mach Investigation (LMT) flights, in which an air data boom was attached to a cylinder with a conical nose cap . This flight test phase quantified the local Mach number and the local flow angle at a single point under the F-155B/PFTF. (2) The Cone Drag Experiment (CDE), in which the cylinder / nosecap assembly was tested in order to validate the PFTF's integral 6-component force balance. The next test phase with the PFTF is the flight test of the channeled centerbody axisymmetric inlet. However, for the flight data from this test to be valid, more information must be gathered concerning the quality of the flow through the aerodynamic interface plane of the inlet. The flow angularity and Mach number must be known at multiple locations on the interface plane. Flight data will be gathered using a custom-design flowfield rake to probe the flow underneath the F-15B at the design flight conditions.
    Keywords: Aircraft Design, Testing and Performance
    Type: DFRC-769 , 26th AIAA Applied Aerodynamics Conference; Aug 18, 2008 - Aug 21, 2008; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center is a unique test platform available for use on NASA's F-15B aircraft, tail number 836, as a modular host for a variety of aerodynamics and propulsion research. For future flight data from this platform to be valid, more information must be gathered concerning the quality of the airflow underneath the body of the F-15B at various flight conditions, especially supersonic conditions. The flow angularity and Mach number must be known at multiple locations on any test article interface plane for measurement data at these locations to be valid. To determine this prerequisite information, flight data will be gathered in the Rake Airflow Gauge Experiment using a custom-designed flowfield rake to probe the airflow underneath the F-15B at the desired flight conditions. This paper addresses the design considerations of the rake and probe assembly, including the loads and stress analysis using analytical methods, computational fluid dynamics, and finite element analysis. It also details the flow calibration procedure, including the completed wind-tunnel test and posttest data reduction, calibration verification, and preparation for flight-testing.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 47th AIAA Aerospace Sciences Meeting and Exhibit; Jan 05, 2009; Orlando, Fl; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Flowfield rake was designed to quantify the flowfield for inlet research underneath NASA DFRC s F-15B airplane. Detailed loads and stress analysis performed using CFD and empirical methods to assure structural integrity. Calibration data were generated through wind tunnel testing of the rake. Calibration algorithm was developed to determine the local Mach and flow angularity at each probe. RAGE was flown November, 2008. Data is currently being analyzed.
    Keywords: Aerodynamics
    Type: DFRC-941 , 47th AIAA Aerospace Sciences Meeting; Jan 05, 2009 - Jan 08, 2009; Florida; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...