ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2018-07-11
    Description: Atmosphere, Vol. 9, Pages 256: Top-of-Atmosphere Shortwave Anisotropy over Liquid Clouds: Sensitivity to Clouds’ Microphysical Structure and Cloud-Topped Moisture Atmosphere doi: 10.3390/atmos9070256 Authors: Florian Tornow René Preusker Carlos Domenech Cintia K. Carbajal Henken Sören Testorp Jürgen Fischer We investigated whether Top-of-Atmosphere Shortwave (TOA SW) anisotropy—essential to convert satellite-based instantaneous TOA SW radiance measurements into TOA SW fluxes—is sensitive to cloud-top effective radii and cloud-topped water vapor. Using several years of CERES SSF Edition 4 data—filtered for overcast, horizontally homogeneous, low-level and single-layer clouds of cloud optical thickness 10—as well as broadband radiative transfer simulations, we built refined empirical Angular Distribution Models (ADMs). The ADMs showed that anisotropy fluctuated particularly around the cloud bow and cloud glory (up to 2.9–8.0%) for various effective radii and at highest and lowest viewing zenith angles under varying amounts of cloud-topped moisture (up to 1.3–6.4%). As a result, flux estimates from refined ADMs differed from CERES estimates by up to 20 W m−2 at particular combinations of viewing and illumination geometry. Applied to CERES cross-track observation of January and July 2007—utilized to generate global radiation budget climatologies for benchmark comparisons with global climate models—we found that such differences between refined and CERES ADMs introduced large-scale biases of 1–2 W m−2 and on regional levels of up to 10 W m−2. Such biases could be attributed in part to low cloud-top effective radii (about 8 μm) and low cloud-topped water vapor (1.7 kg m−2) and in part to an inopportune correlation of viewing and illumination conditions with temporally varying effective radii and cloud-topped moisture, which failed to compensate towards vanishing flux bias. This work may help avoid sampling biases due to discrepancies between individual samples and the median cloud-top effective radii and cloud-top moisture conditions represented in current ADMs.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...