ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Climate change treatments – winter warming, summer drought and increased summer precipitation – have been imposed on an upland grassland continuously for 7 years. The vegetation was surveyed yearly. In the seventh year, soil samples were collected on four occasions through the growing season in order to assess mycorrhizal fungal abundance. Mycorrhizal fungal colonisation of roots and extraradical mycorrhizal hyphal (EMH) density in the soil were both affected by the climatic manipulations, especially by summer drought. Both winter warming and summer drought increased the proportion of root length colonised (RLC) and decreased the density of external mycorrhizal hyphal. Much of the response of mycorrhizal fungi to climate change could be attributed to climate-induced changes in the vegetation, especially plant species relative abundance. However, it is possible that some of the mycorrhizal response to the climatic manipulations was direct – for example, the response of the EMH density to the drought treatment. Future work should address the likely change in mycorrhizal functioning under warmer and drier conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Plantago lanceolata and Trifolium repens were grown under ambient (400 μmol mol–1) and elevated (650 μmol mol–1) atmospheric CO2 conditions. Plants were inoculated with the arbuscular mycorrhizal fungus Glomus mosseae and given a phosphorus supply in the form of bonemeal. Six sequential harvests were taken in order to determine whether the effect of elevated CO2 on internal mycorrhizal colonization and external hyphal production was independent of the stimulatory effect of elevated CO2 on plant growth. At a given time, elevated CO2 increased the percentage of root length colonized (RLC), the total length of colonized root and the external mycorrhizal hyphal (EMH) density and decreased the ratio of EMH to total length of colonized root. When plant size was taken into account, the CO2 effect on RLC and total length of colonized root was greatly reduced (and only apparent for early harvests in T. repens) and the effects on the EMH parameters disappeared. Root tissue P concentration was unchanged at elevated CO2, but there was a decrease in shoot P at the later harvests. There was no direct effect of elevated CO2 on P inflow for the earlier period (〈 50 d) of the experiment. However, over the last period, there was a significant negative effect of elevated CO2 on P inflow for both species, independent of plant size. It is concluded that elevated CO2 had no direct effect on mycorrhizal colonization or external hyphal production, and that any observed effects on a time basis were due to faster growing plants at elevated CO2. However, for older plants, elevated CO2 had a direct negative effect on P inflow. This decrease in P inflow coincides with the observed decrease in shoot P concentration. This is discussed in terms of downregulation of photosynthesis often seen in elevated CO2 grown plants, and the potential for mycorrhizas (via external hyphal turnover) to alleviate the phenomenon. The direction for future research is highlighted, especially in relation to carbon flow to and storage in the soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Arbuscular mycorrhizal (AM) fungi have a major influence on the structure, responses and below-ground C allocation of plant communities. Our lack of understanding of the response of AM fungi to factors such as light and temperature is an obstacle to accurate prediction of the impact of global climate change on ecosystem functioning. In order to investigate this response, we divided a grassland site into 24 plots, each either unshaded or partly shaded with soil either unheated or heated by 3°C at 2 cm depth. In both short-term studies in spring and autumn, and in a 1-year-long study, we measured root length colonization (LRC) by AM and non-AM fungi. For selected root samples, DNA sequences were amplified by PCR with fungal-specific primers for part of the small sub-unit (SSU) rRNA gene. In spring, the total LRC increased over 6 weeks from 12% to 25%. Shading significantly reduced AM but increased non-AM fungal colonization, while soil warming had no effect. In the year-long study, colonization by AM fungi peaked in summer, whereas non-AM colonization peaked in autumn, when there was an additive effect of shading and soil warming that reduced AM but increased non-AM fungi. Stepwise regression revealed that light received within the 7 days prior to sampling was the most significant factor in determining AM LRC and that mean temperature was the most important influence on non-AM LRC. Loglinear analysis confirmed that there were no seasonal or treatment effects on the host plant community. Ten AM fungal sequence types were identified that clustered into two families of the Glomales, Glomaceae and Gigasporaceae. Three other sequence types were of non-AM fungi, all Ascomycotina. AM sequence types showed seasonal variation and shading impacts: loglinear regression analysis revealed changes in the AM fungal community with time, and a reduction of one Glomus sp. under shade, which corresponded to a decrease in the abundance of Trifolium repens. We suggest that further research investigating any impacts of climate change on ecosystem functioning must not only incorporate their natural AM fungal communities but should also focus on niche separation and community dynamics of AM fungi.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing
    Global change biology 10 (2004), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Accurate knowledge of the response of root turnover to a changing climate is needed to predict growth and produce carbon cycle models. A soil warming system and shading were used to vary soil temperature and received radiation independently in a temperate grassland dominated by Holcus lanatus L. Minirhizotrons allowed root growth and turnover to be examined non-destructively. In two short-term (8 week) experiments, root responses to temperature were seasonally distinct. Root number increased when heating was applied during spring, but root death increased during autumnal heating. An experiment lasting 12 months demonstrated that any positive response to temperature was short-lived and that over a full growing season, soil warming led to a reduction in root number and mass due to increased root death during autumn and winter. Root respiration was also insensitive to soil temperature over much of the year. In contrast, root growth was strongly affected by incident radiation. Root biomass, length, birth rate, number and turnover were all reduced by shading. Photosynthesis in H. lanatus exhibited some acclimation to shading, but assimilation rates at growth irradiance were still lower in shaded plants. The negative effects of shading and soil warming on roots were additive. Comparison of root data with environmental measurements demonstrated a number of positive relationships with photosynthetically active radiation, but not with soil temperature. This was true both across the entire data set and within a shade treatment. These results demonstrate that root growth is unlikely to be directly affected by increased soil temperatures as a result of global warming, at least in temperate areas, and that predictions of net primary productivity should not be based on a positive root growth response to temperature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Company
    Nature biotechnology 8 (1990), S. 473-473 
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] To the editor: Your article on the risks from genetically engineering crops (Bio/ Technology 7:1134, Nov. '89) is liable to mislead companies that put proposals before regulatory committees in Europe. Most of Dr. Keeler's article leads to the conclusion that the risks are minimal: only on the last ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 440 (2006), S. 605-605 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Sir Your Editorial “It's academic” (Nature 439, 763–764; 200610.1038/439763a) reports the need for stronger national academies in Africa. The British Ecological Society launched its Building Capacity for ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 413 (2001), S. 297-299 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Arbuscular mycorrhizal fungi (order Glomales), which form mycorrhizal symbioses with two out of three of all plant species, are believed to be obligate biotrophs that are wholly dependent on the plant partner for their carbon supply. It is thought that they possess no degradative capability and ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Interactions between Pseudomonas fluorescens biocontrol agents and Glomus mosseae, an arbuscular mycorrhizal fungus, were studied. The biocontrol agents included the genetically modified strains CHA96 and CHA0 pME3424 which produced enhanced levels of antifungal compounds. Tomato (Lycopersicum esculentum) and leek (Allium porrum) host plants were grown in sterile Terra-Green (calcined attapulgite clay) with limited nutrients. Mycorrhizal activity was indicated by shoot dry weight and phosphorus content. In all experiments, plants grown in the presence of G. mosseae had a significantly higher shoot dry weight than those grown in the absence of G. mosseae. Colonisation and activity of G. mosseae was unaltered in the presence of P. fluorescens isolates and presence of G. mosseae increased the population of P. fluorescens in the rhizosphere.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Interactions between Pseudomonas fluorescens biocontrol agents and Glomus mosseae, an arbuscular mycorrhizal fungus, were studied. The biocontrol agents included the genetically modified strains CHA96 and CHA0 pME3424 which produced enhanced levels of antifungal compounds. Tomato (Lycopersicon esculentum) and leek (Allium porrum) host plants were grown in sterile Terra-Green (calcined attapulgite clay) with limited nutrients. Mycorrhizal activity was indicated by shoot dry weight and phosphorus content. In all experiments, plants grown in the presence of G. mosseae had a significantly higher shoot dry weight than those grown in the absence of G. mosseae. Colonisation and activity of G. mosseae was unaltered in the presence of P. fluorescens isolates and presence of G. mosseae increased the population of P. fluorescens in the rhizosphere.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1890
    Keywords: Key words Ectomycorrhiza ; Arbuscular mycorrhiza ; Saplings ; Tropical ; Temperate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Ectomycorrhizas (EcM) and arbuscular mycorrhizas (AM) were screened for in saplings of 14 EcM tree species from the N'Dupé and Korup National Park rainforests, SW Cameroon, belonging to Caesalpiniaceae and Uapacaceae. The pattern of EcM and AM colonisation of a dual mycorrhizal species from this rainforest (Uapaca staudtii, Uapacaceae) was compared with dual EcM/AM colonisation of Leptospermum scoparium (Myrtaceae) from New Zealand. Both species were collected in a range of habitats. EcM and AM colonisation differed among species in the Korup National Park rainforest: 12 species belonging to the Caesalpiniaceae (Amherstieae) were consistently EcM, and AM structures occurred occasionally in six of them; two other species belonging to Caesalpiniaceae (Afzelia bipindensis) and Uapacaceae (U. staudtii) were dual mycorrhizal with variable levels of colonisation by both EcM and AM fungi. EcM and AM dual colonisation varied with both habitat and identity of the partners. The presence of EcM fungi in most of the root samples of U. staudtii and a negative relationship between AM and EcM colonisation within the same root system suggested a greater EcM affinity of this species. In contrast, most root samples of L. scoparium were colonised by AM, but only a few by EcM. Genuine dual EcM/AM associations in root samples of U. staudtii where the two mycorrhizal types co-occurred could be attributed to an AM-EcM succession. However, differences between predicted and observed frequencies of genuine dual EcM/AM associations in several samples of both U. staudtii and L. scoparium indicated that other factors influenced dual EcM/AM associations. The results of this study showed the importance of the identity of the host species in determining the pattern of dual EcM and AM colonisation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...