ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Years
  • 1
    Publication Date: 2019-06-28
    Description: A method has been developed to analyze the wing/rotor interaction of tilt rotor aircraft in hover. The unsteady, thin-layer compressible Navier-Stokes equations are solved using an implicit, finite difference scheme that employs LU-ADI factorization. The rotor is modeled as an actuator disk which imparts a radial and azimuthal distribution of pressure rise and swirl to the flowfield. The 'chimera' approach of grid point blanking is used to update the rotor boundary conditions. Results are presented for both a rotor alone and for wing/rotor interaction where the thrust coefficient is 0.0164 and wing flap deflection is 67 degrees. Many of the complex flow features are captured including the fountain effect, leading and trailing edge separation, and the unsteady wake beneath the wing. Wing surface pressures compare fairly well with experimental data although the time-averaged download is about twenty percent higher than the measured value. This discrepancy is due to a combination of factors that are discussed.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 91-0707
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: The download on the wing produced by the rotor-induced downwash of a tilt rotor aircraft in hover is of major concern because of its severe impact on payload-carrying capability. A method has been developed to help gain a better understanding of the fundamental fluid dynamics that causes this download, and to help find ways to reduce it. In particular, the method is employed in this work to analyze the effect of a tangential leading edge circulation-control jet on download reduction. Because of the complexities associated with modeling the complete configuration, this work focuses specifically on the wing/rotor interaction of a tilt rotor aircraft in hover. The three-dimensional, unsteady, thin-layer compressible Navier-Stokes equations are solved using a time-accurate, implicit, finite difference scheme that employs LU-ADI factorization. The rotor is modeled as an actuator disk which imparts both a radical and an azimuthal distribution of pressure rise and swirl to the flowfield. A momentum theory blade element analysis of the rotor is incorporated into the Navier-Stokes solution method. Solution blanking at interior points of the mesh has been shown here to be an effective technique in introducing the effects of the rotor and tangential leading edge jet. Results are presented both for a rotor alone and for wing/rotor interaction. The overall mean characteristics of the rotor flowfield are computed including the flow acceleration through the rotor disk, the axial and swirl velocities in the rotor downwash, and the slipstream contraction. Many of the complex tilt rotor flow features are captured including the highly three-dimensional flow over the wing, the recirculation fountain at the plane of symmetry, wing leading and trailing edge separation, and the large region of separated flow beneath the wing. Mean wing surface pressures compare fairly well with available experimental data, but the time-averaged download/thrust ratio is 20-30 percent higher than the measured value. The discrepancy is due to a combination of factors that are discussed. Leading edge tangential blowing, of constant strength along the wing span, is shown to be effective in reducing download. The jet serves primarily to reduce the pressure on the wing upper surface. The computation clearly shows that, because of the three-dimensionality of the flowfield, optimum blowing would involve a spanwise variation in blowing strength.
    Keywords: AERODYNAMICS
    Type: NASA-CR-4532 , A-93096 , NAS 1.26:4532
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: The download on the wing produced by the rotor wake of a tilt rotor vehicle in hover is of major concern because of its severe impact on payload-carrying capability. In a concerted effort to understand the fundamental fluid dynamics that cause this download, and to help find ways to reduce it, computational fluid dynamics (CFD) is employed to study this problem. The thin-layer Navier-Stokes equations are used to describe the flow, and an implicit, finite difference numerical algorithm is the method of solution. The methodology is developed to analyze the tilt rotor flowfield. Included are discussions of computations of an airfoil and wing in freestream flows at -90 degrees, a rotor alone, and wing/rotor interaction in two and three dimensions. Preliminary results demonstrate the feasibility and great potential of the present approach. Recommendations are made for both near-term and far-term improvements to the method.
    Keywords: AERODYNAMICS
    Type: NASA-CR-186116 , JIAA-TR-96 , NAS 1.26:186116
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The effect of a thin tangential jet located at the leading edge of the wing of a tilt rotor configuration in hover is computed using the thin-layer Navier-stokes equations. Computations showed that leading edge tangential blowing is effective in reducing the download caused by the impingement of the rotor download caused by the impingement of the rotor downwash on the wing. Results from the numerical model support previous experimental findings that download reduction is due mainly to a decrease in upper surface pressure and not an increase in pressure on the lower surface. The numerical solution clearly shows that because of the three-dimensionality of the flow field, the download could be reduced further by allowing a spanwise variation in blowing strength.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 92-2608 , AIAA Applied Aerodynamics Conference; Jun 22, 1992 - Jun 24, 1992; Palo Alto, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 30; 11; p. 2595-2603.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...