ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Tetrahedron Letters 1 (1959), S. 19-23 
    ISSN: 0040-4039
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-07-01
    Print ISSN: 0038-0717
    Electronic ISSN: 1879-3428
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-26
    Print ISSN: 0143-1161
    Electronic ISSN: 1366-5901
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Taylor & Francis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-06-16
    Description: We present an evaluation of sources, sinks and turbulent transport of nitrogen oxides, ozone and volatile organic compounds (VOC) in the boundary layer over French Guyana and Suriname during the October 2005 GABRIEL campaign by simulating observations with a single-column chemistry and climate model (SCM) along a zonal transect. Simulated concentrations of O3 and NO as well as NO2 photolysis rates over the forest agree well with observations when a small soil-biogenic NO emission flux was applied. This suggests that the photochemical conditions observed during GABRIEL reflect a pristine tropical low-NOx regime. The SCM uses a compensation point approach to simulate nocturnal deposition and daytime emissions of acetone and methanol and produces daytime boundary layer mixing ratios in reasonable agreement with observations. The area average isoprene emission flux, inferred from the observed isoprene mixing ratios and boundary layer height, is about half the flux simulated with commonly applied emission algorithms. The SCM nevertheless simulates too high isoprene mixing ratios, whereas hydroxyl concentrations are strongly underestimated compared to observations, which can at least partly explain the discrepancy. Furthermore, the model substantially overestimates the isoprene oxidation products methlyl vinyl ketone (MVK) and methacrolein (MACR) partly due to a simulated nocturnal increase due to isoprene oxidation. This increase is most prominent in the residual layer whereas in the nocturnal inversion layer we simulate a decrease in MVK and MACR mixing ratios, assuming efficient removal of MVK and MACR. Entrainment of residual layer air masses, which are enhanced in MVK and MACR and other isoprene oxidation products, into the growing boundary layer poses an additional sink for OH which is thus not available for isoprene oxidation. Based on these findings, we suggest pursuing measurements of the tropical residual layer chemistry with a focus on the nocturnal depletion of isoprene and its oxidation products.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-10-27
    Description: We present an evaluation of sources, sinks and turbulent transport of nitrogen oxides, ozone and volatile organic compounds (VOC) in the boundary layer over French Guyana and Suriname during the October 2005 GABRIEL campaign by simulating observations with a single-column chemistry and climate model (SCM) along a zonal transect. Simulated concentrations of O3 and NO as well as NO2 photolysis rates over the forest agree well with observations when a small soil-biogenic NO emission flux was applied. This suggests that the photochemical conditions observed during GABRIEL reflect a pristine tropical low-NOx regime. The SCM uses a compensation point approach to simulate nocturnal deposition and daytime emissions of acetone and methanol and produces daytime boundary layer mixing ratios in reasonable agreement with observations. The area average isoprene emission flux, inferred from the observed isoprene mixing ratios and boundary layer height, is about half the flux simulated with commonly applied emission algorithms. The SCM nevertheless simulates too high isoprene mixing ratios, whereas hydroxyl concentrations are strongly underestimated compared to observations, which can at least partly explain the discrepancy. Furthermore, the model substantially overestimates the isoprene oxidation products methlyl vinyl ketone (MVK) and methacrolein (MACR) partly due to a simulated nocturnal increase due to isoprene oxidation. This increase is most prominent in the residual layer whereas in the nocturnal inversion layer we simulate a decrease in MVK and MACR mixing ratios, assuming efficient removal of MVK and MACR. Entrainment of residual layer air masses, which are enhanced in MVK and MACR and other isoprene oxidation products, into the growing boundary layer poses an additional sink for OH which is thus not available for isoprene oxidation. Based on these findings, we suggest pursuing measurements of the tropical residual layer chemistry with a focus on the nocturnal depletion of isoprene and its oxidation products.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-12-03
    Description: The biogenic emission of nitric oxide (NO) from the soil has an important impact on a number of environmental issues, such as the production of tropospheric ozone, the cycle of the hydroxyl radical (OH) and the production of NO. In this study we collected soils from four differing vegetation patch types (Pan, Annual Grassland, Perennial Grassland and Bush Encroached) in an arid savanna ecosystem in the Kalahari (Botswana). A laboratory incubation technique was used to determine the net potential NO flux from the soils as a function of the soil moisture and the soil temperature. The net potential NO emissions were up-scaled for the year 2006 and a region (185 km×185 km) of the southern Kalahari. For that we used (a) the net potential NO emissions measured in the laboratory, (b) the vegetation patch distribution obtained from Landsat NDVI measurements, (c) estimated soil moisture contents obtained from ENVISAT ASAR measurements and (d) the soil surface temperature estimated using MODIS MOD11A2 8 day land surface temperature measurements. Differences in the net potential NO fluxes between vegetation patches occur and range from 0.27 ng m−2 s−1 in the Pan patches to 2.95 ng m−2 s−1 in the Perennial Grassland patches. Up-scaling the net potential NO fluxes with the satellite derived soil moisture and temperature data gave NO fluxes of up to 323 g ha−1 month−1, where the highest up-scaled NO fluxes occurred in the Perennial Grassland patches, and the lowest in the Pan patches. A marked seasonal pattern was observed where the highest fluxes occurred in the austral summer months (January and February) while the minimum fluxes occurred in the austral winter months (June and July), and were less than 1.8 g ha−1 month−1. Over the course of the year the mean NO emission for the up-scaled region was 0.54 kg ha−1 yr−1, which accounts for a loss of up to 7.4% of the nitrogen (N) input to the region through atmospheric deposition and biological N fixation. The biogenic emission of NO from the soil is therefore an important mechanism of N loss from this arid savanna ecosystem and has the potential to play an important role in the production of tropospheric ozone and the OH cycle.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-07-07
    Description: Soils of arid and semi-arid ecosystems are important biogenic sources of atmospheric nitric oxide (NO), however, there is still a shortage of measurements from these systems. Here we present the results of a laboratory study of the biogenic emission of NO from four different landscape positions of the Kruger National Park (KNP), a large conservation area in a semi-arid region of South Africa. Results show that the highest net potential NO fluxes come from the low lying (footslope) landscape regions, which have the largest nitrogen stocks and highest rates of nitrogen input into the soil. Net potential NO fluxes from midslope and crest regions were considerably lower. The maximum release of NO occurred at fairly low soil moisture contents of 10%–20% water filled pore space. Using soil moisture and temperature data obtained in situ at the Kruger National Park flux tower site, net potential NO fluxes obtained in the laboratory were converted to field fluxes for each of the four landscape positions for the period 2003 to 2005. The highest field NO flux is from footslope positions, during each of these years and emissions ranged from 1.5–8.5 kg ha−1 yr−1 (in terms of mass of nitrogen). Remote sensing and Geographic Information Systems techniques were used to up-scale field NO fluxes on a regional basis indicating that the highest emissions occurred from the midslope positions, due to their large geographical extent in the considered research area. Emissions for the KNP Skukuza land type (56 000 ha) ranged from 20×103 kg in 2004 to 34×103 kg in 2003. The importance of landscape characteristics in the determination of regional biogenic NO soil emissions is emphasized.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-03-10
    Description: South Africa has one of the largest industrialized economies in Africa. Emissions of air pollutants are particularly high in the Johannesburg-Pretoria metropolitan area, the Mpumalanga Highveld and the Vaal Triangle, resulting in local air pollution. This study presents and evaluates a setup for conducting modeling experiments over southern Africa with the Weather Research and Forecasting model including chemistry and aerosols (WRF-Chem), and analyzes the contribution of anthropogenic emissions to the total black carbon (BC) concentrations from September to December 2010. The modeled BC concentrations are compared with measurements obtained at the Welgegund station situated ca. 100 km southwest of Johannesburg. An evaluation of WRF-Chem with observational data from ground-based measurement stations, radiosondes, and satellites shows that the meteorology is modeled mostly reasonably well, but precipitation amounts are widely overestimated and the onset of the wet season is modeled approximately 1 month too early in 2010. Modeled daily mean BC concentrations show a good temporal correlation with measurements, but the total BC concentration is underestimated in the model by up to 50%. Sensitivity studies with anthropogenic emissions of BC and co-emitted species turned off show that anthropogenic sources can contribute up to 100% to BC concentrations in the industrialized and urban areas, and anthropogenic BC and co-emitted species together up to 60% to PM1 levels. Particularly the co-emitted species contribute significantly to the aerosol optical depth (AOD). Furthermore, in areas of large scale biomass burning atmospheric heating rates are increased through absorption by BC up to about the 600 hPa level.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-12-12
    Description: Soils of arid and semi-arid ecosystems are important biogenic sources of atmospheric nitric oxide (NO), however, there is still a shortage of measurements from these systems. Here we present the results of a laboratory study of the biogenic emission of NO from four different landscape positions of the Kruger National Park (KNP), a large conservation area in a semi-arid region of South Africa. Results show that the highest net potential NO fluxes come from the low lying (footslope) landscape regions, which have the largest nitrogen stocks and highest rates of nitrogen input into the soil. Net potential NO fluxes from midslope and crest regions were considerably lower. The maximum release of NO occurred at fairly low soil moisture contents of 10%–20% water filled pore space. Using soil moisture and temperature data obtained in situ at the Kruger National Park flux tower site, net potential NO fluxes obtained in the laboratory were converted to field fluxes for each of the four landscape positions for the period 2003 to 2005. The highest field NO flux is from footslope positions, during each of these years and emissions ranged from 1.5–8.5 kg ha a (in terms of mass of nitrogen). Remote sensing and Geographic Information Systems techniques were used to up-scale field NO fluxes on a regional basis indicating that the highest emissions occurred from the midslope positions, due to their large geographical extent in the considered research area. Emissions for the KNP Skukuza land type (56 000 ha) ranged from 20×103 kg in 2004 to 34×103 kg in 2003. The importance of landscape characteristics in the determination of regional biogenic NO soil emission is emphasized.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-08-12
    Description: South Africa has one of the largest industrialized economies in Africa. Emissions of air pollutants are particularly high in the Johannesburg-Pretoria metropolitan area, the Mpumalanga Highveld and the Vaal Triangle, resulting in local air pollution. This study presents and evaluates a setup for conducting modeling experiments over southern Africa with the Weather Research and Forecasting model including chemistry and aerosols (WRF-Chem), and analyzes the contribution of anthropogenic emissions to the total black carbon (BC) concentrations from September to December 2010. The modeled BC concentrations are compared with measurements obtained at the Welgegund station situated ca. 100 km southwest of Johannesburg. An evaluation of WRF-Chem with observational data from ground-based measurement stations, radiosondes, and satellites shows that the meteorology is modeled mostly reasonably well, but precipitation amounts are widely overestimated and the onset of the wet season is modeled approximately 1 month too early in 2010. Modeled daily mean BC concentrations show a temporal correlation of 0.66 with measurements, but the total BC concentration is underestimated in the model by up to 50 %. Sensitivity studies with anthropogenic emissions of BC and co-emitted species turned off show that anthropogenic sources can contribute up to 100 % to BC concentrations in the industrialized and urban areas, and anthropogenic BC and co-emitted species together can contribute up to 60 % to PM1 levels. Particularly the co-emitted species contribute significantly to the aerosol optical depth (AOD). Furthermore, in areas of large-scale biomass-burning atmospheric heating rates are increased through absorption by BC up to an altitude of about 600hPa.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...