ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2019-10-31
    Description: This paper focuses on the 60 GHz band, which is known to be very attractive for enabling next-generation abundant multi-Gbps wireless connectivity in 5G communication. We propose a novel concept of a double-layer antenna, loosely inspired from standard log-periodic schemes but with an aperiodic geometry, reduced size, and a limited number of elements while achieving excellent performance over the entire 60 GHz band. To maximize the antenna’s efficiency, we have developed a design that differs from those traditionally used for millimeter-wave communication applications. We aim to simultaneously maximize the gain, efficiency, and bandwidth. The reflection coefficient of the proposed design achieves a bandwidth of 20.66% from 53.9 GHz up to 66.3 GHz, covering the entire frequency band of interest. In addition, this proposed structure achieves a maximum realized gain of 11.8 dBi with an estimated radiation efficiency of 91.2%. The proposed antenna is simulated, fabricated, and tested in an anechoic chamber environment. The measurement data show a reasonable agreement with the simulation results, with respect to the bandwidth, gain, and side-lobe level over the operational spectrum.
    Electronic ISSN: 2079-9292
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-01-01
    Description: The last decade has witnessed a remarkable growth in the telecommunication industry. With the introduction of smart gadgets, the demand for high data rate and bandwidth for wireless applications have increased exponentially at the cost of exponential consumption of energy. The latter is pushing the research and industry communities to devise green communication solutions that require the design of energy saving devices and techniques in one part and ambient energy harvesting techniques in the other part. With the advent of nanocomponents fabrication technology, researchers are now able to tap into the THz frequency regime and fabricate optical low profile antennas at a nanoscale. Optical antennas have proved their potential and are revolutionizing a class of novel optical detectors, interconnectors, sensors, and energy harvesting related fields. Authors in this paper propose an equilateral triangular dielectric resonator nantenna (ETDRNA) working at 193.5 THz standard optical frequency. The simulated antenna achieves an impedance bandwidth from 192.3 THz to 197.3 THz with an end-fire directivity of 8.6 dBi, covering the entire standard optical window of C-band. Numerical demonstrations prove the efficiency of the nantenna at the frequencies of interest, making it a viable candidate for future green energy harvesting and high speed optical applications.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-01
    Description: A novel compact dual-polarized-spectral-signature-based chipless radio-frequency identification (RFID) tag is presented. Specifically, an L-shape resonator-based structure is optimized to have different spectral signatures in both horizontal and vertical polarizations, in order to double the encoding capacity. Resonators’ slot width and the space between closely placed resonators are also optimized to enhance the mutual coupling, thereby helping in achieving high-data encoding density. The proposed RFID tag operates over 5 GHz to 10 GHz frequency band. As a proof of concept, three different 18-bit dual-polarized RFID tags are simulated, fabricated, and tested in an anechoic chamber environment. The measurement data show reasonable agreement with the simulation results, with respect to resonators’ frequency positions, null depth, and their bandwidth over the operational spectrum.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-01-01
    Description: Nanoscale transmission and reception technologies will play a vital role and be part of the next generation communication networks. This applies for all application fields including imaging, health, biosensing, civilian, and military communications. The detection of light frequency using nanooptical antennas may possibly become a good competitor to the semiconductor based photodetector because of the simplicity of integration, cost, and inherent capability to detect the phase and amplitude instead of power only. In this paper, authors propose simulated design of a hexagonal dielectric loaded nantenna (HDLN) and explore its potential benefits at the standard optical C-band (1550 nm). The proposed nantenna consists of “Ag-SiO2-Ag” structure, consisting of “Si” hexagonal dielectric with equal lengths fed by “Ag” nanostrip transmission line. The simulated nantenna achieves an impedance bandwidth of 3.7% (190.9 THz–198.1 THz) and a directivity of 8.6 dBi, at a center frequency of 193.5 THz, covering most of the ITU-T standard optical transmission window (C-band). The hexagonal dielectric nantenna producesHE20δmodes and the wave propagation is found to be end-fire. The efficiency of the nantenna is proven via numerical expressions, thus making the proposed design viable for nanonetwork communications.
    Print ISSN: 1687-5869
    Electronic ISSN: 1687-5877
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...