ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of the American Ceramic Society 88 (2005), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Alumina bilayers of different relative thicknesses and densities were produced with a strong interface using a modified gel-casting technique. Tolerance to surface damage is examined using biaxial flexure of disks damaged with a single Vickers indentation at various loads. The greatest surface flaw tolerance is seen in bilayers consisting of a thin porous layer on the tensile surface coupled to a thick dense layer. Here, the modulus mismatch causes redistribution of the applied stress, and fracture initiates at the internal porous-dense interface rather than at the surface from the introduced indentation flaw.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of the American Ceramic Society 88 (2005), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Due to its coefficient of thermal expansion (CTE) and phase stability up to 1360°C, tantalum oxide (Ta2O5) was identified and investigated as a candidate environmental barrier coating for silicon nitride-based ceramics. Ta2O5 coatings were plasma sprayed onto AS800, a silicon nitride ceramic from Honeywell International, and subjected to static and cyclic heat treatments up to 1200°C in air. Cross-sections from coated and uncoated substrates were polished and etched to reveal the effect of heat treatments on microstructure and grain size. As-sprayed coatings contained vertical cracks that healed after thermal exposure. Significant grain growth that was observed in the coatings led to microcracking due to the anisotropic CTE of Ta2O5. High-energy X-ray diffraction was used to determine the effect of heat treatment on residual stress and phases. The uncoated substrates were found to have a surface compressive layer before and after thermal cycling. Coating stresses in the as-sprayed state were found to be tensile, but became compressive after heat treatment. The microcracking and buckling that occurred in the heat-treated coatings led to stress relaxation after long heat treatments, but ultimately would be detrimental to the function of the coating as an environmental barrier by affording open pathways for volatile species to reach the underlying ceramic.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 83 (2000), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The influence of spray parameters on the microstructure and flexural strength of plasma-sprayed alumina was investigated. Coatings were applied using a small-particle plasma spray (SPPS) method, which is a recently patented process that allows submicrometer-sized powders to be sprayed. Using identical starting powders, coatings that were produced using two distinctly different spray conditions exhibited significant differences in both microstructure and strength. Scanning electron microscopy investigations of single lamellae (or splats) revealed that, for one spray condition, melted alumina particles will splash when they contact the substrate. The morphology of the splats that comprised the subsequent layers of the coating also were highly fragmented and thinner than lamellae formed under “nonsplashing” spray conditions. The surface roughness was strongly dependent on the morphology of the lamellae; increased roughness was noted for fragmented splats. Thick coatings that were comprised of splashed splats developed a unique microstructural feature that was responsible for the observed increase in roughness. These microstructural differences greatly influenced the flexure strength, which varied from 75 ± 21 MPa for the nonsplashing spray condition to 17 ± 2.4 MPa for the “splashing” condition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 82 (1999), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The microstructure of a small-particle plasma spray (SPPS) aluminum oxide coating sprayed onto a prepared mild steel substrate has been characterized using a variety of microscopic techniques as part of a process optimization study. The coating was highly conforming to the substrate as evidenced in high-resolution transmission electron microscopy, although some voids were present at the interface. The layered splat microstructure, characteristic of conventional plasma-sprayed coatings but smaller in size, was discerned in partially thinned samples in a focused-ion-beam scanning electron microscope (FIB-SEM). Microcracks and microporosity, generally less than 0.5 µm in size, was also seen between splats using transmission electron microscopy. Cubic alumina of the crystallographic form gamma-Al2O3 was identified by electron diffraction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 82 (1999), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The fracture process of steel fiber/cementitious matrix composites has been studied using a single-fiber pullout test that permits detailed measurements of the load-crack opening displacement relationship during fiber debonding and unloading. Using a suitable analytical model, the interfacial fracture energy and interfacial sliding friction have been calculated for composites incorporating steel fibers with cement paste or mortar matrices. Comparison of theoretical debonding curves with the experimental data show that the model accurately represents the fiber debonding process, except for a decrease in interfacial sliding friction due to wear of matrix asperities at the interface. Differences between the calculated interfacial properties of several specimens are associated with changes in the interfacial microstructure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 80 (1997), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Crystallographically textured samples of iron titanate were produced by gelcasting in the presence of a strong magnetic field. Texture was assessed by measuring X-ray pole figures on samples that were cast in different orientations relative to the applied field. Specimens in this study exhibit fiber-type texture, with the b-axes aligned parallel to the applied field. Peak texture strengths were on the order of 3 and 48 multiples of a random distribution (MRD) when processed in a 3.2 and 8.4 T magnetic field, respectively. This study shows that a combination of gelcasting with magnetic-field-assisted processing provides a convenient method for fabricating samples which can be used to study the role of crystallographic texture on the physical properties of polycrystalline ceramics, e.g., their elastic or fracture behavior.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 65 (1989), S. 2508-2512 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The role of isovalent dopants in the high-temperature deformation of GaAs has been studied in the temperature range 500–1150 °C. Additions of In, Sb, and B increase the critical resolved shear stress for deformation at a given strain rate and result in lowering the dislocation density of as-grown liquid-encapsulated Czochralski GaAs crystals. Phosphorus, because of its minor influence on the lattice strain, shows little enhancement of the yield stress. These results are consistent with a solute hardening model, in which the solute atom surrounded tetrahedrally by four Ga or As atoms comprise the hardening cluster. Codoping with In and Si hardens GaAs, but codoping with Si is less effective than the isovalent solutes In, Sb, and B, and produces softening at high temperatures. The effect of solutes on both dislocation nucleation and multiplication are reviewed here.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 62 (1987), S. 4130-4134 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Compressive deformation of undoped and In-doped GaAs single crystals has been carried out in [001] and [123] orientations in the temperature range 700–1100 °C. Indium additions, at levels of 1–2×1020 atoms cm−3, result in critical resolved shear stress (CRSS) values that are about twice as large as the undoped crystals in the temperature range of 700–1100 °C. The CRSS was weakly dependent on temperature in the temperature range investigated as expected for a model of athermal solid solution hardening. The CRSS value of 3.3 MPa for the In-doped crystal is sufficient to eliminate profuse dislocation formation in a 75-mm-diam crystal on the basis of current theories for the magnitude of the thermal stress experienced during growth. The results also suggest that the process of dislocation climb is slowed appreciably by In doping.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 60 (1986), S. 4136-4140 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Substantial solid-solution strengthening of GaAs by In acting as InAs4 units has recently been predicted for an intermediate-temperature plateau region. This strengthening could account, in part, for the reduction of dislocation density in GaAs single crystals grown from the melt. Hardness measurements at high temperatures up to 900 °C have been carried out on (100) GaAs, Ga0.9975In0.0025As, and Ga0.99In0.01As wafers, all of which contain small amounts of boron. Results show a significant strengthening effect in In-doped GaAs. A nominally temperature-independent flow-stress region is observed for all three alloys. The In-doped GaAs shows a higher plateau stress level with increasing In content. The results are consistent with the solid-solution strengthening model. The magnitude of the solid-solution hardening is sufficient to explain the reduction in dislocation density with In addition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 66 (1995), S. 3105-3107 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The fracture strength of free-standing chemically vapor-deposited diamond films was assessed by four-point bending. A two-parameter Weibull analysis was performed on 130 μm thick films resulting in a Weibull modulus of 4.3 and a statistical scaling stress of 626 MPa. The residual stress in films was measured from the free-standing film curvature to be 384±10 MPa. The fracture surface chemistry was examined using scanning Auger spectroscopy. The fracture did not occur preferentially along grain boundaries. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...