ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 173-189 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Enteropathogenic Escherichia coli (EPEC) is a gram-negative bacterial pathogen that adheres to human intestinal epithelial cells, resulting in watery, persistent diarrhea. It subverts the host cell cytoskeleton, causing a rearrangement of cytoskeletal components into a characteristic pedestal structure underneath adherent bacteria. In contrast to other intracellular pathogens that affect the actin cytoskeleton from inside the host cytoplasm, EPEC remains extracellular and transmits signals through the host cell plasma membrane via direct injection of virulence factors by a "molecular syringe," the bacterial type III secretion system. One injected factor is Tir, which functions as the plasma membrane receptor for EPEC adherence. Tir directly links extracellular EPEC through the epithelial membrane and firmly anchors it to the host cell actin cytoskeleton, thereby initiating pedestal formation. In addition to stimulating actin nucleation and polymerization in the host cell, EPEC activates several other signaling pathways that lead to tight junction disruption, inhibition of phagocytosis, altered ion secretion, and immune responses. This review summarizes recent developments in our understanding of EPEC pathogenesis and discusses similarities and differences between EPEC pedestals, focal contacts, and Listeria monocytogenes actin tails.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Enterohaemorrhagic Escherichia coli (EHEC) adheres to the host intestinal epithelium, resulting in the formation of actin pedestals beneath adhering bacteria. EHEC and a related pathogen, enteropathogenic E. coli (EPEC), insert a bacterial receptor, Tir, into the host plasma membrane, which is required for pedestal formation. An important difference between EPEC and EHEC Tir is that EPEC but not EHEC Tir is tyrosine phosphorylated once delivered into the host. In this study, we assessed the role of Tir tyrosine phosphorylation in pedestal formation by EPEC and EHEC. In EPEC, pedestal formation is absolutely dependent on Tir tyrosine phosphorylation and is not complemented by EHEC Tir. The protein sequence surrounding EPEC Tir tyrosine 474 is critical for Tir tyrosine phosphorylation and pedestal formation by EPEC. In contrast, Tir tyrosine phosphorylation is not required for pedestal formation by EHEC. EHEC forms pedestals with both wild-type EPEC Tir and the non-tyrosine-phosphorylatable EPEC Tir Y474F. Pedestal formation by EHEC requires the type III delivery of additional EHEC factors into the host cell. These findings highlight differences in the mechanisms of pedestal formation by these closely related pathogens and indicate that EPEC and EHEC modulate different signalling pathways to affect the host actin cytoskeleton.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: NRAMPs (natural resistance-associated macrophage proteins) have been characterized in mammals as divalent transition metal transporters involved in iron metabolism and host resistance to certain pathogens. The mechanism of pathogen resistance is proposed to involve sequestration of Fe2+ and Mn2+, cofactors of both prokaryotic and eukaryotic catalases and superoxide dismutases, not only to protect the macrophage against its own generation of reactive oxygen species, but to deny the cations to the pathogen for synthesis of its protective enzymes. NRAMP homologues are also present in bacteria. We report the cloning and characterization of the single NRAMP genes in Escherichia coli and Salmonella enterica ssp. typhimurium, and the cloning of two distinct NRAMP genes from Pseudomonas aeruginosa and an internal fragment of an NRAMP gene in Burkholderia cepacia. The genes are designated mntH because the two enterobacterial NRAMPs encode H+-stimulated, highly selective manganese(II) transport systems, accounting for all Mn2+ uptake in each species under the conditions tested. For S. typhimurium MntH, the Km for 54Mn2+ (≈ 0.1 µM) was pH independent, but maximal uptake increased as pH decreased. Monovalent cations, osmotic strength, Mg2+ and Ca2+ did not inhibit 54Mn2+ uptake. Ni2+, Cu2+ and Zn2+ inhibited uptake with Kis greater than 100 µM, Co2+ with a Ki of 20 µM and Fe2+ with a Ki that decreased from 100 µM at pH 7.6 to 10 µM at pH 5.5. Fe3+ and Pb2+ inhibited weakly, exhibiting Kis of 50 µM, while Cd2+ was a potent inhibitor with a Ki of about 1 µM. E. coli MntH had a similar inhibition profile, except that Kis were three- to 10-fold higher. Both S. typhimurium and E. coli MntH also transport 55Fe2+ however, the Kms are equivalent to the Kis for Fe2+ inhibition of Mn2+ uptake, and are thus too high to be physiologically relevant. In both S. typhimurium and E. coli, mntH::lacZ constructs were strongly induced by hydrogen peroxide, weakly induced by EDTA and unresponsive to paraquat, consistent with the presence of Fur and OxyR binding sites in the promoters. Strains overexpressing mntH were more susceptible to growth inhibition by Mn2+ and Cd2+ than wild type, and strains lacking a functional mntH gene were more susceptible to killing by hydrogen peroxide. In S. typhimurium strain SL1344, mntH mutants showed no defect in invasion of or survival in cultured HeLa or RAW264.7 macrophage cells; however, expression of mntH::lacZ was induced severalfold by 3 h after invasion of the macrophages. S. typhimurium mntH mutants showed only a slight attenuation of virulence in BALB/c mice. Thus, the NRAMP Mn2+ transporter MntH and Mn2+ play a role in bacterial response to reactive oxygen species and possibly have a role in pathogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Pathogenicity islands (PAIs) are large DNA segments in the genomes of bacterial pathogens that encode virulence factors. Five PAIs have been identified in the Gram-negative bacterium Salmonella enterica. Two of these PAIs, Salmonella pathogenicity island (SPI)-1 and SPI-2, encode type III secretion systems (TTSS), which are essential virulence determinants. These ‘molecular syringes’ inject effectors directly into the host cell, whereupon they manipulate host cell functions. These effectors are either encoded with their respective TTSS or scattered elsewhere on the Salmonella chromosome. Importantly, SPI-1 and SPI-2 are expressed under distinct environmental conditions: SPI-1 is induced upon initial contact with the host cell, whereas SPI-2 is induced intracellularly. Here, we demonstrate that a single PAI, in this case SPI-5, can encode effectors that are induced by distinct regulatory cues and targeted to different TTSS. SPI-5 encodes the SPI-1 TTSS translocated effector, SigD/SopB. In contrast, we report that the adjacently encoded effector PipB is part of the SPI-2 regulon. PipB is translocated by the SPI-2 TTSS to the Salmonella-containing vacuole and Salmonella-induced filaments. We also show that regions of SPI-5 are not conserved in all Salmonella spp. Although sigD/sopB is present in all Salmonella spp., pipB is not found in Salmonella bongori, which also lacks a functional SPI-2 TTSS. Thus, we demonstrate a functional and regulatory cross-talk between three chromosomal PAIs, SPI-1, SPI-2 and SPI-5, which has significant implications for the evolution and role of PAIs in bacterial pathogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Our laboratories have independently identified a gene in Salmonella choleraesuis and Salmonella typhimurium that is necessary for efficient adherence and entry of these organisms into cultured epithelial cells. Introduction of a mutated gene into several Salmonella strains belonging to different serotypes rendered these organisms deficient for adherence and invasion of cultured cells. This effect was most pronounced in the host-adapted serotypes Salmonella gallinarum, S. choleraesuis, and Salmonella typhi. The nucleotide sequence of this gene, which we have termed invH, encodes a predicted 147-amino-acid polypeptide containing a signal sequence. The InvH predicted polypeptide is highly conserved in S. typhimurium and S. choleraesuis, differing at only three residues. The invH gene was expressed in Escherichia coli using a T7 RNA polymerase expression system and a polypeptide of ∼16000 molecular weight was observed, in agreement with the predicted size of its gene product. Upon fractionation, the expressed polypeptide was localized in the bacterial membrane fraction. Southern and colony hybridization analyses indicated that the invH gene is present in all Salmonella strains tested (91 strains belonging to 37 serotypes) with the exception of strains of Salmonella arizonae. No homologous sequences were detected in Yersinia, Shigella, Proteus, and several strains of enteroinvasive and enteropathogenic E. coli. Downstream from the S. choleraesuis (but not S. typhimurium) invH gene, a region with extensive homology to the insertion sequence IS3 was detected.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: A clonal variant of serotype M1 group A streptococcus (designated M1inv+) has been linked to severe and invasive infections, including sepsis, necrotizing fasciitis and toxic shock. High frequency internalization of cultured epithelial cells by the M1inv+ strain 90-226 is dependent upon the M1 protein. Invasion of HeLa cells was blocked by an anti-M1 antibody, invasion by an M1− strain (90-226 emm1::km) was greatly reduced, and latex beads bound to M1 protein were readily internalized by HeLa cells. Beads coated with a truncated M1 protein were internalized far less frequently. Scanning electron microscopy indicated that streptococci invade by a zipper-like mechanism, that may be mediated by interactions with host cell microvilli. Initially, internalized streptococci and streptococci undergoing endocytosis are associated with polymerized actin. Later in the internalization process, streptococcal-containing vacuoles are associated with the lysosomal membrane glycoprotein, LAMP-1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Salmonella species are facultative intracellular pathogens that invade epithelial cells and reside within lysosomal membrane glycoprotein (Igp)-containing vacuoles. Coincident with the onset of bacterial replication inside these vacuoles, Salmonella induce the formation of stable Igp-containing filamentous structures that connect with the Salmonella-containing vacuoles. Salmonella typhimurium SL1344::Tn 10dCm mutant strains unable to induce these structures were isolated. All contained insertions within a novel Salmonella induced filament gene A (sifA). sifA is present only in Salmonella species and encodes a protein with a predicted molecular mass of 38kDa and an apparent molecular mass of 35kDa. sifA is flanked by ∼300 base pairs, and sifA and its flanking DNA show no homology to sequences in DNA databases. sifA is located within the potABCD operon, a housekeeping locus involved in periplasmic transport of polyamines. Fourteen-base-pair direct repeats mark the probable site of integration of sifA and its flanking DNA at the 3 end of potB. sifA and its flanking DNA have a significantly reduced G+C content (41%) when compared with the potABCD operon (51%) and the Salmonella genome (52–54%). Deletion mutant strains
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Enteropathogenic Escherichia coli (EPEC) is a leading cause of infant diarrhoea. EPEC mediates several effects on host epithelial cells, including activation of signal-transduction pathways, cytoskeletal rearrangement along with pedestal and attachingleffacing lesion formation. It has been previously shown that the EPEC eaeB (espB) gene encodes a secreted protein required for signal transduction and adherence, while eaeA encodes intimin, an EPEC membrane protein that mediates intimate adherence and contributes to focusing of cytoskeletal proteins beneath bacteria. DNA-sequence analysis of a region between eaeA and eaeB identified a predicted open reading frame (espA) that matched the amino-terminal sequence of a 25 kDa EPEC secreted protein. A mutant with a non-polar insertion in espA does not secrete this protein, activate epithelial cell signal transduction or cause cytoskeletal rearrangement. These phenotypes were complemented by a cloned espA gene. The espA mutant is also defective for invasion. It is concluded that espA encodes an EPEC secreted protein that is necessary for activating epithelial signal transduction, intimate contact, and formation of attaching and effacing lesions, processes which are central to pathogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Enteropathogenic Escherichia coli (EPEC) secretes several Esps (E. coli-secreted proteins) that are required for full virulence. Insertion of the bacterial protein Tir into the host epithelial cell membrane is facilitated by a type III secretion apparatus, and at least EspA and EspB are required for Tir translocation. An EPEC outer membrane protein, intimin, interacts with Tir on the host membrane to establish intimate attachment and formation of a pedestal-like structure. In this study, we identified a Tir chaperone, CesT, whose gene is located between tir and eae (which encodes intimin). A mutation in cesT abolished Tir secretion into culture supernatants and significantly decreased the amount of Tir in the bacterial cytoplasm. In contrast, this mutation did not affect the secretion of the Esp proteins. The level of tir mRNA was not affected by the cesT mutation, indicating that CesT acts at the post-transcriptional level. The cesT mutant could not induce host cytoskeletal rearrangements, and displayed the same phenotype as the tir mutant. Gel overlay and GST pulldown assays demonstrated that CesT specifically interacts with Tir, but not with other Esp proteins. Furthermore, by using a series of Tir deletion derivatives, we determined that the CesT binding domain is located within the first 100 amino-terminal residues of Tir, and that the pool of Tir in the bacterial cytoplasm was greatly reduced when this domain was disrupted. Interestingly, this domain was not sufficient for Tir secretion, and at least the first 200 residues of Tir were required for efficient secretion. Gel filtration studies showed that Tir–CesT forms a large multimeric complex. Collectively, these results indicate that CesT is a Tir chaperone that may act as an anti-degradation factor by specifically binding to its amino-terminus, forming a multimeric stabilized complex.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...