ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-09-20
    Description: [1]  We analyzed the Very Large Array (VLA) archived data observed in 2000 to determine whether solar UV/EUV heating of the Jovian thermosphere causes variations in the total flux density and dawn-dusk asymmetry (the characteristic differences between the peak emissions at dawn and dusk) of Jupiter ' s synchrotron radiation (JSR). The total flux density varied by 10% over six days of observations and accorded with theoretical expectations. The average dawn-dusk peak emission ratio indicated that the dawn side emissions were brighter than those on the dusk side, and this was expected to have been caused by diurnal wind induced by the solar UV/EUV. The daily variations in the dawn-dusk ratio did not correspond to the solar UV/EUV, and this finding did not support the theoretical expectation that the dawn-dusk ratio and diurnal wind velocity varies in correspondence with the solar UV/EUV. We tried to determine whether the average dawn-dusk ratio could be explained by a reasonable diurnal wind velocity. We constructed an equatorial brightness distribution model of JSR using the revised Divine-Garrett particle distribution model and used it to derive a relation between the dawn-dusk ratio and diurnal wind velocity. The estimated diurnal wind velocity reasonably corresponded to a numerical simulation of the Jovian thermosphere. We also found that realistic changes in the diurnal wind velocity could not cause the daily variations in the dawn-dusk ratio. Hence, we propose that the solar UV/EUV related variations were below the detection limit and some other processes dominated the daily variations in the dawn-dusk ratio.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Abstract We present the first and direct comparison between magnetospheric plasma waves and polar mesosphere winter echoes (PMWE) simultaneously observed by the conjugate observation with Arase satellite and high‐power atmospheric radars in both hemispheres, namely, the Program of the Antarctic Syowa Mesosphere, Stratosphere, and Troposphere/Incoherent Scatter Radar (PANSY) at Syowa Station (SYO; ‐69.00°S, 39.58°E), Antarctica, and the Middle Atmosphere Alomar Radar System (MAARSY) at Andøya (AND; 69.30°N, 16.04°E), Norway. The PMWE were observed during 03‐07 UT on March 21, 2017, just after the arrival of corotating interaction region (CIR) in front of high‐speed solar wind stream. An isolated substorm occurred at 04 UT during this interval. Electromagnetic ion cyclotron (EMIC) waves and whistler‐mode chorus waves were simultaneously observed near the magnetic equator and showed similar temporal variations to that of the PMWE. These results indicate that chorus waves as well as EMIC waves are drivers of precipitation of energetic electrons, including relativistic electrons, which make PMWE detectable at 55‐80 km altitude. Cosmic noise absorption (CNA) measured with a 38.2‐MHz imaging riometer and low‐altitude echoes at 55‐70 km measured with an MF radar at SYO also support the relativistic electron precipitation. We suggest a possible scenario in which the various phenomena observed in near‐Earth space, such as magnetospheric plasma waves (EMIC waves and chorus waves), pulsating auroras, CNA, and PMWE, can be explained by the interaction between the high‐speed solar wind containing CIRs and the magnetosphere.
    Print ISSN: 2169-9380
    Electronic ISSN: 2169-9402
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-01-03
    Description: [1]  Jovian quasiperiodic (QP) radio bursts are suspected to be associated with relativistic particle accelerations occurring with a quasiperiodicity between a few minutes and a few tens of minutes in Jupiter's polar magnetosphere. Understanding the excitation and propagation of QP bursts could help us to better understand this periodic energization process. A first necessary step is to measure the wave mode, source location, and directivity of QP bursts. For that purpose, we performed a statistical analysis of goniopolarimetric measurements of QP bursts made with the Radio and Plasma Wave Science investigation (RPWS) onboard Cassini spacecraft during the Jupiter flyby of 2000–2001. We studied two groups of QP bursts on 22 and 23 December 2000, and we found consistent source directions about 50 R J north of Jupiter with an error bar ≤20 R J . Statistics of the Stokes parameters indicate that QP bursts are partially left-handed polarized ( V 〉 0, Q ,  U  〈 0). Together with the direction finding results, these polarization statistics imply that QP bursts observed from low latitudes are L-O mode waves which have been excited in the northern polar source, have propagated toward high latitudes, and then got refracted equatorward in the magnetosheath. Dependence of the Stokes parameters on the longitude indicates that QP bursts are excited within a particular phase range of the planetary rotation, when the system III longitude of the sub-solar point is between 260° and 480°. This implies that QP radio bursts and associated particle accelerations always occur within the same rotational sector, suggesting the existence of a recurrent magnetospheric disturbance at the planetary rotation period. Finally, we propose a possible scenario for the generation and propagation of QP bursts by combining the results of the present study with those of other recent observational and theoretical studies.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-02-06
    Description: Jupiter's X-ray auroral emission in the polar cap region results from particles which have undergone strong field-aligned acceleration into the ionosphere [ Cravens et al. , 2003]. The origin of precipitating ions and electrons and the time variability in the X-ray emission are essential to uncover the driving mechanism for the high energy acceleration. The magnetospheric location of the source field line where the X-ray is generated is likely affected by the solar wind variability. However, these essential characteristics are still unknown because the long-term monitoring of the X-rays and contemporaneous solar wind variability has not been carried out. In Apr 2014, the first long-term multi-wavelength monitoring of Jupiter's X-ray and EUV auroral emissions was made by the Chandra X-ray Observatory, XMM-Newton, and Hisaki satellite. We find that the X-ray count rates are positively correlated with the solar wind velocity and insignificantly with the dynamic pressure. Based on the magnetic field mapping model, a half of the X-ray auroral region was found to be open to the interplanetary space. The other half of the X-ray auroral source region is magnetically connected with the pre-noon to post-dusk sector in the outermost region of the magnetosphere, where the Kelvin-Helmholtz (KH) instability, magnetopause reconnection, and quasi-periodic particle injection potentially take place. We speculate that the high energy auroral acceleration is associated with the KH instability and/or magnetopause reconnection. This association is expected to also occur in many other space plasma environments such as Saturn and other magnetized rotators.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-10-29
    Description: Using the Extreme Ultraviolet Spectroscope for Exsospheric Dynamics (EXCEED) aboard Hisaki and the Solar Extreme Ultraviolet Monitor (SEM) on the Solar and Heliospheric Observatory (SOHO), we investigate variations of the extreme ultraviolet (EUV) dayglow brightness for OII 83.4 nm, OI 130.4 nm and OI 135.6 nm in the Venusian upper atmosphere observed in Mar-April (period 1), April-May (period 2) and June-July (period 3) in 2014. The result shows that characteristic periodicities exist in the dayglow variations other than the ~ 27-day solar rotational effect of the solar EUV flux: 1.8, 2.8, 3.1, 4.5, and 9.9-day in period 1, 1.1-day in period 2, and 1.0 and 11-day in period 3. Many of these periodicities are consistent with previous observations and theory. We suggest these periodicities are related to density oscillations of oxygen atoms or photoelectrons in the thermosphere. The cause of these periodicities is still uncertain, but planetary-scale waves and/or gravity waves propagating from the middle atmosphere, and/or minor periodic variations of the solar EUV radiation flux may play a role. Effects of the solar wind parameters (velocity, dynamic pressure and interplanetary magnetic field's (IMF) intensity) on the dayglow variations are also investigated using the Analyser of Space Plasma and Energetic Atoms (ASPERA-4) and magnetometer (MAG) aboard Venus Express. Although clear correlation with the dayglow variations is not found, their minor periodicities are similar to the dayglow periodicities. Contribution of the solar wind to the dayglow remains still unknown, but the solar wind parameters might affect the dayglow variations.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-01-29
    Description: In January 2014 Jupiter's FUV main auroral oval decreased its emitted power by 70% and shifted equatorward by ∼1 ∘ . Intense, low latitude features were also detected. The decrease in emitted power is attributed to a decrease in auroral current density rather than electron energy. This could be caused by a decrease in the source electron density, an order of magnitude increase in the source electron thermal energy, or a combination of these. Both can be explained either by expansion of the magnetosphere, or by an increase in the inward transport of hot plasma through the middle magnetosphere and its interchange with cold flux tubes moving outward. In the latter case the hot plasma could have increased the electron temperature in the source region and produced the intense, low latitude features, while the increased cold plasma transport rate produced the shift of the main oval.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-02-23
    Description: This paper examines AKR spectra using the long-term observation from the Polar satellite to prove the comprehensive features of field-aligned auroral acceleration and to give observational constraints to the theoretical mechanisms for acceleration at substorm. The remote observations of substorm phenomena through auroral radio waves from the high altitude polar magnetosphere disclosed some fundamental characteristics of the vertical auroral acceleration region and provided new information on the formation process for field-aligned electric field at substorm onset. Furthermore, we reveal new aspect of the relationship between the plasma state in the plasma sheet and the formation of auroral acceleration.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-03-01
    Description: Using the electron data from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft measurements from 2007 to 2009, we derived global phase space density (PSD) distributions of plasma sheet electrons (2–100 eV/nT) to examine the transport process of the electrons to the inner magnetosphere and possible loss mechanisms of plasma sheet electrons during the convective transport. The inner boundaries of the electron plasma sheet were determined by the observed global distributions and compared with the Alfvén boundaries that were calculated by the sum of the simple corotation and convection electric field models. This comparison confirms the previous results that the large-scale convection electric field controls the electron transport to the inner magnetosphere. The gradual decrease in PSD is observed from the dawn to the dayside sector, indicating the existence of some loss mechanisms in the morning sector. The loss time scales estimated from the PSD distributions were compared with the theoretical ones based on the quasi-linear diffusion theory using an empirical wave model of whistler mode chorus. We also estimated the required wave amplitudes that can explain the estimated loss time scales. It is shown that whistler mode chorus has a sufficient power to scatter the plasma sheet electrons, and the required wave amplitudes are roughly consistent with the CRRES statistical survey of the chorus wave amplitude. We suggest that the loss of plasma sheet electrons in the morning sector is mainly induced by pitch angle scattering by whistler mode chorus.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-02-22
    Description: By conducting a statistical survey of both wave and particle observations of the Galileo spacecraft, we reveal a close relationship between enhancements of whistler mode chorus and development of energetic electron anisotropies in the Jovian inner magnetosphere. We studied the spatial distribution of intense chorus emissions in the Jovian magnetosphere and identified 104 chorus enhancements by analyzing plasma wave data in the frequency range from 5.6 Hz to 20 kHz obtained from the entire Galileo mission in the inner Jovian magnetosphere during the time period from December 1995 to September 2003. Enhanced chorus emissions with integrated wave power over 10−9 V2/m2 were observed around the magnetic equator in the radial distance range from 6 to 13 RJ. A survey of energetic particle data in the energy range of 29–42 keV reveals that all of the identified chorus events were observed in the region of pancake pitch angle distributions of energetic electrons. The ratio of the electron plasma frequency to the electron cyclotron frequency in this region is estimated to be in the range from 1 to 10 using empirical plasma and magnetic field models. This range is suitable for efficient whistler mode wave generation. The present study shows the complete survey of the correspondence between intense chorus and flux enhancement of energetic electrons having statistically significant pancake pitch angle distributions in the Jovian magnetosphere.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: Abstract In the Jovian magnetosphere, sulfur and oxygen ions supplied by the satellite Io are distributed in the so‐called Io plasma torus. The plasma torus is located in the inner area of the magnetosphere and the plasma in the torus corotates with the planet. The density and the temperature of the plasma in the torus have significant azimuthal variations. In this study, data from three‐year observations obtained by the Hisaki satellite, from December 2013 to August 2016, were used to investigate statistically the azimuthal variations and to find out whether the variations were influenced by the increase in neutral particles from Io. The azimuthal variation was obtained from a time series of sulfur ion line ratios, which were sensitive to the electron temperature and the sulfur ion mixing ratio S3+/S+. The major characteristics of the azimuthal variation in the plasma parameters were consistent with the dual hot electron model, proposed to explain previous observations. On the other hand, the Hisaki data showed that the peak System III longitude in the S3+/S+ ratio was located not only around 0°–90°, as in previous observations, but also around 180°–270°. The rotation period, the System IV periodicity, was sometimes close to the Jovian rotation period. Persistent input of energy to electrons in a limited longitude range of the torus is associated with the shortening of the System IV period.
    Print ISSN: 2169-9380
    Electronic ISSN: 2169-9402
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...