ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-08-14
    Description: Incorporation of charcoal produced by biomass pyrolysis (biochar) in agricultural soils is a potentially sustainable strategy for climate change mitigation. However, some side effects of large-scale biochar application need to be investigated. In particular a massive use of a low-reflecting material on large cropland areas may impact the climate via changes in surface albedo. Twelve years of MODIS-derived albedo data were analysed for three pairs of selected agricultural sites in central Italy. In each pair bright and dark coloured soil were identified, mimicking the effect of biochar application on the land surface albedo of complex agricultural landscapes. Over this period vegetation canopies never completely masked differences in background soil colour. This soil signal , expressed as an albedo difference, induced a local instantaneous radiative forcing of up to 4.7 W m ?2 during periods of high solar irradiance. Biochar mitigation potential might therefore be ...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-02
    Description: Vegetation has a substantial impact on the local climate. Land cover changes through afforestation or deforestation can amplify or mitigate climate warming by changes in biophysical and biogeochemical mechanisms. In the montane to subalpine area of the Eastern Alps in Europe, where forests have constantly expanded in the last four decades, data of meteorological stations show a consistent reduction in incoming global radiation for the period 2000–2015. To assess the potential role of forests in contributing to such a reduction, three site pairs in Central Europe with neighbouring forest and non-forest sites were analysed. In all the pairs, a lower amount of incoming radiation was recorded at the forest site. When biophysical mechanisms such as albedo, surface roughness and Bowen ratio changes were modelled together with changes in global radiation, the total radiative forcing accounted for a rate of change in air temperature was equal to 0.032 °C ± 0.01 °C per Wm −2 . T...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-12-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gianelle, Damiano -- Oechel, Walter -- Miglietta, Franco -- Rodeghiero, Mirco -- Sottocornola, Matteo -- New York, N.Y. -- Science. 2010 Dec 10;330(6010):1476-7. doi: 10.1126/science.330.6010.1476-c.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21148371" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon/*analysis ; *Climatic Processes ; *Databases, Factual ; *Ecosystem ; International Cooperation ; Soil/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-20
    Description: Hydrothermal carbonization (HTC) has been proposed as an alternative method to pyrolysis for producing C-rich amendments for soil C sequestration. However, the use of hydrochar (HC) as soil amendment, is still controversial due to the limited information on the potential benefits and trade-offs that may follow its application into soil. This study investigated the effects of HC starting from maize silage on plant growth in a 2 years controlled experiment on poplar for bioenergy and evaluated HC stability in soil by periodic soil respiration and isotopic ( δ 13 C) measurements. HC application caused a substantial and significant increase in plant biomass after one and two years after planting and no evident signs of plant diseases were evident. Isotopic analysis on soil and CO 2 efflux showed that slightly less than half of the C applied was re-emitted as CO 2 within 12 months. On the contrary, considering that the difference in the amount of N fixed in wood biomass in treated and not-treated poplars was 16.6±4.8 g N m −2 and that the soil N stocks after one year since application did not significantly change, we estimated that approximately 85% of the N applied with HC could have been potentially lost as leachate or volatilized into the atmosphere as N 2 O, in response to nitrification/denitrification processes in the soil. Thus, the permanence, additionality and leakage of C sequestration strategy using HC are deeply discussed. This article is protected by copyright. All rights reserved.
    Print ISSN: 1757-1693
    Electronic ISSN: 1757-1707
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 27 (2004), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The long-term effect of elevated atmospheric CO2 on isoprenoid emissions from adult trees of two Mediterranean oak species (the monoterpene-emitting Quercus ilex L. and the isoprene-emitting Quercus pubescens Willd.) native to a high-CO2 environment was investigated. During two consecutive years, isoprenoid emission was monitored both at branch level, measuring the actual emissions under natural conditions, and at leaf level, measuring the basal emissions under the standard conditions of 30 °C and at light intensity of 1000 µmol m−2 s−1. Long-term exposure to high atmospheric levels of CO2 did not significantly affect the actual isoprenoid emissions. However, when leaves of plants grown in the control site were exposed for a short period to an elevated CO2 level by rapidly switching the CO2 concentration in the gas-exchange cuvette, both isoprene and monoterpene basal emissions were clearly inhibited. These results generally confirm the inhibitory effect of elevated CO2 on isoprenoid emission. The absence of a CO2 effect on actual emissions might indicate higher leaf temperature at elevated CO2, or an interaction with multiple stresses some of which (e.g. recurrent droughts) may compensate for the CO2 effect in Mediterranean ecosystems. Under elevated CO2, isoprene emission by Q. pubescens was also uncoupled from the previous day's air temperature. In addition, pronounced daily and seasonal variations of basal emission were observed under elevated CO2 underlining that correction factors may be necessary to improve the realistic estimation of isoprene emissions with empirical algorithms in the future. A positive linear correlation of isoprenoid emission with the photosynthetic electron transport and in particular with its calculated fraction used for isoprenoid synthesis was found. The slope of this relationship was different for isoprene and monoterpenes, but did not change when plants were grown in either ambient or elevated CO2. This suggests that physiological algorithms may usefully predict isoprenoid emission also under rising CO2 levels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: It is estimated that more than 100 geothermal CO2 springs exist in central-western Italy. Eight springs were selected in which the atmospheric CO2 concentrations were consistently observed to be above the current atmospheric average of 354μmol mol-1. CO2 concentration measurements at some of the springs are reported. The springs are described, and their major topographic and vegetational features are reported. Preliminary observations made on natural vegetation growing around the gas vents are then illustrated. An azonal pattern of vegetation distribution occurs around every CO2 spring regardless of soil type and phytoclimatic areas. This is composed of pioneer populations of a Northern Eurasiatic species (Agrostis canina L.) which is often associated with Scirpus lacustris L. The potential of these sites for studying the long-term response of vegetation to rising atmospheric CO2 concentrations is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd, UK
    Plant, cell & environment 21 (1998), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Variations in the water relations and stomatal response of Quercus ilex were analysed under field conditions by comparing trees at two locations in a Mediterranean environment during two consecutive summers (1993 and 1994). We used the heat-pulse velocity technique to estimate transpirational water use of trees during a 5 month period from June to November 1994. At the end of sap flow measurements, the trees were harvested, and the foliage and sapwood area measured. A distinct environmental gradient exists between the two sites with higher atmospheric CO2 concentrations in the proximity of a natural CO2 spring. Trees at the spring site have been growing for generations in elevated atmospheric CO2 concentrations. At both sites, maximum leaf conductance was related to predawn shoot water potential. The effects of water deficits on water relations and whole-plant transpiration during the summer drought were severe. Leaf conductance and water potential recovered after major rainfall in September to predrought values. Sap flow, leaf conductance and predawn water potential decreased in parallel with increases in hydraulic resistance, reaching a minimum in mid-summer. These relationships are in agreement with the hypothesis of the stomatal control of transpiration to prevent desiccation damage but also to avoid ‘runaway embolism’. Trees at the CO2 spring underwent less reduction in hydraulic resistance for a given value of predawn water potential. The decrease in leaf conductance caused by elevated CO2 was limited and tended to be less at high than at low atmospheric vapour pressure deficit. Mean (and diurnal) sap flux were consistently higher in the control site trees than in the CO2 spring trees. The degree of reduction in water use between the two sites varied among the summer periods. The control site trees had consistently higher sap flow at corresponding values of either sapwood cross-sectional area or foliage area. Larger trees displayed smaller differences than smaller trees, between the control and the CO2 spring trees. A strong association between foliage area and sapwood cross-sectional area was found in both the control and the CO2 spring trees, the latter supporting a smaller foliage area at the corresponding sapwood stem cross-sectional area. The specific leaf area (SLA) of the foliage was not influenced by site. The results are discussed in terms of the effects of elevated CO2 on plant water use at the organ and whole-tree scale.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 16 (1993), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Springs emitting carbon dioxide are frequent in Central Italy and provide a way of testing the response of plants to CO2 enrichment under natural conditions. Results of a CO2 enrichment experiment on soybean at a CO2 spring (Solfatara) are presented. The experimental site is characterized by significant anomalies in atmospheric CO2 concentration produced by a large number of vents emitting almost pure CO2 (93%) plus small amounts of hydrogen sulphide, methane, nitrogen and oxygen. Within the gas vent area, plants were grown at three sub-areas whose mean CO2 concentrations during daytime were 350,652 and 2370 μmol mol-1, respectively. Weekly harvests were made to measure biomass growth, leaf area and ontogenetic development. Biomass growth rate and seed yield were enhanced by elevated CO2. In particular, onto-morphogenetic development was affected by elevated CO2 with high levels of CO2 increasing the total number of main stem leaf nodes and the area of the main stem trifoliolate leaves. Biochemical analysis of plant tissue suggested that there was no effect of the small amounts of H2S on the response to CO2 enrichment. Non-protein sulphydryl compounds did not accumulate in leaf tissues and the overall capacity of leaf extracts to oxidize exogenously added NADH was not decreased. The limitations and advantages of experimenting with crop plants at elevated CO2 in the open and in the proximity of carbon dioxide springs are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Lifelong exposure to elevated concentrations of atmospheric CO2 may enhance carbon assimilation of trees with unlimited rooting volume and consequently may reduce requirements for photoprotective pigments. In early summer the effects of elevated [CO2] on carboxylation and light utilization of mature Quercus pubescens trees growing under chronic [CO2] enrichment at two CO2 springs and control sites in Italy were examined. Net photosynthesis was enhanced by 36 to 77%. There was no evidence of photosynthetic downregulation early in the growing season when sink demand presumably was greatest. Specifically, maximum assimilation at saturating [CO2], electron transport capacity, and Rubisco content, activity and carboxylation capacity were not significantly different in trees growing at the CO2 springs and their respective control sites. Foliar biochemical content, leaf reflectance index of chlorophyll pigments (NDVI), and photochemical efficiency of PSII (ΔF/Fm′) also were not significantly affected by [CO2] enrichment except that starch content and ΔF/Fm′ tended to be higher at one spring (42 and 15%, respectively). Contrary to expectation, prolonged elevation of [CO2] did not reduce xanthophyll cycle pigment pools or alter mid-day values of leaf reflectance index of xanthophyll cycle pigments (PRI), despite the enhancement of carbon assimilation. However, both these pigments and PRI were well correlated with electron transport capacity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The effects of free-air CO2 enrichment (FACE) on leaf growth in Populus, was studied. For the first time in field conditions, both the production and expansion of leaf cells were shown to be sensitive to atmospheric carbon dioxide. Leaf area expansion rate and final leaf size were stimulated under FACE for three species (Populus x euramericana (I-214), P. nigra (Jean Pourtet) and P. alba (2AS-11), with the largest effect observed for P. x euramericana (61%). In this species and in P. nigra, both epidermal cell size and cell number were increased, whereas for P. alba, only cell production was increased in FACE. Two findings suggest that changes in the cell wall may be important in explaining larger leaf cells in FACE: (i) Leaf cell wall extensibility of rapidly growing leaves increased in all species in FACE; and (ii) an increase in xyloglucan endotransglycosylase activity, a cell wall-loosening enzyme, was increased in FACE and associated with leaf growth rate. The results suggest that the mechanisms by which FACE promotes leaf growth differ, depending on species. Despite this, increases in final leaf size provide an important component driving increased biomass accumulation in POPFACE, during this first year of rapid growth, prior to canopy closure. The question as to whether these effects are the result of a direct response to CO2, or are driven indirectly through substrate availability remains unresolved, although evidence from the literature suggests that the latter mechanism is most likely.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...