ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2013-08-22
    Description: Key Points Reduction in ADAMTS13 function and complement dysregulation coexist in a significant number of patients with aHUS. Variations in the ADAMTS13 gene (polymorphisms and rare variants) are partly responsible for the reduced ADAMTS13 function in aHUS.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-11-16
    Description: Abstract 3342 The thrombotic microangiopathies (TMA) thrombotic thrombocytopenic purpura (TTP) and atypical hemolytic uremic syndrome (aHUS) involve progressive microvascular thrombi, endothelial cell (EC) injury, vascular ischemia, and severe end-organ damage. Acquired TTP is often associated with autoantibody-mediated suppression of the ADAMTS13 vWF cleaving protease, causing vWF multimer accumulation and platelet aggregation. aHUS is associated with dysregulation of the alternate complement pathway through mutation in and/or autoantibodies against, complement regulatory proteins. It is responsive to the anti-C5 mAb eculizumab. TTP, by contrast, usually responds to plasma exchange, but in the refractory setting there are few effective treatments. We hypothesized that dysregulation of the alternate complement pathway represents a susceptibility factor for EC injury in at least a subset of TTP patients. Our objective was to identify the degree of complement dysregulation in acute TTP vs. other TMAs in vivo, and correlate these data with (1) the ability of plasma from acute TTP and aHUS patients to induce apoptotic injury in primary human microvascular EC in vitro and (2) the potential of eculizumab to block this injury. Plasmas from acute TMA patients (TTP n=12, malignancy-associated aHUS n=6, ticlopidine-associated TTP n=4, systemic Degos disease n=1), and healthy controls (n=4) were collected at time of presentation. Samples were assayed for terminal complement components sC5b-9 (MAC, membrane attack complex) and C5a by ELISA. Genomic DNA was isolated from these plasmas and amplified by standard DNA PCR, followed by semi-nested PCR using primers designed around the exon sequences of complement factor H (CFH), complement factor I (CFI) and MCP (CD46) known to be mutated in 60–80% of aHUS cases. Amplicons were sequenced and correlated with a database of previously reported mutations and SNPs with varying degrees of functional significance in the complement regulatory pathway. In our in vitro model for plasma-mediated EC injury, primary human dermal microvascular ECs were starved in medium lacking EC growth factors and then incubated for 18–24 hours with 1–2% plasma (v/v) in the presence or absence of pharmacologic levels of anti-C5 mAb (100–250μg/ml). Apoptosis was assessed by ELISA-based quantification of cytoplasmic histone-associated DNA fragments from cell lysate and propidium iodide labeling with construction of DNA histograms and assessment of A0 peaks by flow cytometry. We found significantly elevated plasma levels of C5a in all subsets of patients with TMAs compared to control plasma (42.8 ng/ml +/− 6.2 vs. 32 ng/ml +/− 6.8; p=0.014). We also found markedly elevated levels sC5b-9 in these TMAs compared to controls (1852.0 ng/ml +/− 1169.8 vs 598.8 +/− 338.7; p=0.012). Little variation was seen in TTP vs. aHUS and other TMAs, regardless of ADAMTS13 status. Complement mutations in CFH and CFI were identified in 14 (66.7%) of TMA patients: 41.6% TTP, 60% malignancy-aHUS, 100% ticlopidine TTP. In terms of interference with TMA plasma-induced MVEC apoptosis in vitro, EC injury was blocked by anti-C5 mAb eculizumab in 8 of 19 cases (5 TTP, 2 aHUS, 1 Degos). Correlation of sensitivity to plasma-mediated EC apoptosis and blockade with eculizumab with levels of terminal complement components, presence of complement regulatory factor mutations, levels of ADAMTS13 activity, and anti-ADAMTS13 antibody titers are underway. We conclude that dysregulation of the alternate complement pathway may represent a susceptibility factor in the pathophysiology of many TMAs, not only aHUS. Blockade of C5 may offer a therapeutic avenue for some patients with refractory TTP. Indeed, in a recent report our group noted the rescue of a patient with classic TTP, including ADAMTS13 activity
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-11-16
    Description: Abstract 490 Atypical hemolytic uremic syndrome (aHUS) is a clinically defined thrombotic microangiopathic anemia (TMA) characterized by the symptom triad of renal failure, thrombocytopenia and microangiopathic hemolytic anemia in the absence of Shiga-toxin-producing bacteria as a triggering factor. Its pathogenesis is linked to dysregulation of the alternative pathway of the complement cascade, with loss-of-function mutations reported in complement regulators like factor H (CFH), membrane cofactor protein (MCP), factor I (CHI) and thrombomodulin (THBD), and gain-of-function mutations in complement activators like factor B (CFB) and complement component 3 (C3). In nearly 40% of patients, however, mutations are not identified in these genes raising the possibility of unrecognized contributory genetic causes. Genetic variants in ADAMTS13 (a disintegrin and metalloprotease with thrombospondin motifs) have been causally related to thrombotic thrombocytopenic purpura (TTP), another TMA characterized by the pentad of neurologic symptoms, fever, kidney failure, thrombocytopenia and microangiopathichemolytic anemia. The phenotypic similarities between aHUS and TTP can at times lead to difficulty in their clinical distinction. On this basis, we hypothesized that partial deficiency in ADAMTS13 function may coexist with abnormalities in the alternative complement pathway in patients with aHUS. To test this hypothesis, we measured ADAMTS13 functional activity in 26 patients with aHUS by fluorescence resonance energy transfer substrate-von Willebrandfactor 73mer (FRETS-VWF73) and recombinant VWF A2 domain cleavage assay. We also genotyped all patients for ADAMTS13 and alternative complement pathway genes. We transiently expressed 10 different ADAMTS13 missense variants in HEK293 cells to analyze activity and secretion of each recombinant protein. The ADAMTS13 functional activity was partially reduced (〈 60%) in serum from 20 patients (77%) as measured by FRETS-VWF73 and recombinant VWF A2 cleavage assays. Genetic variants in ADAMTS13 were identified in 21 patients (81%) and included R386C, Q448E, A900V, V832M, R1060W, R7W/Q448E, A900V/Q448E, R1096H/A747V, R7W/A1033T, R7W/P618A/Q448E, R7W/P618A/A900V/Q448E, R7W/P618A/A732V/Q448E. The coexistence of both ADAMTS13 deficiency and excessive complement functional activity was present in 13 patients (50%). Activity of recombinant ADAMTS13 proteins containing the following variants was normal: R386C, Q448E, P618A, A732V, A747V, V832M, A900V, A1033T and R1060H. The R1096H variant of ADAMTS13 was associated with a reduction in functional activity by 50%. The secretion of recombinant proteins with the following variants was severely reduced: P618A, R1060H (
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...