ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 59 (1996), S. 1427-1435 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: To improve the performance of rubber compounds using precipitated silica as a reinforcing filler, the silica surface was directly modified by (1) adsorption of a surfactant onto the surface, (2) adsolubilization of an organic monomer, (3) in situ polymerization of the monomer in the surfactant bilayer, and (4) partial surfactant removal. Silica was thus modified using copolymers of isoprene or 1,3-butadiene with vinyl acetate, acrylonitrile, 4-methoxystyrene, 4-chlorostyrene, and methyl methacrylate on the silica surface. 4-Methoxystyrene/butadiene modification afforded the most promising candidate based on evaluation in a silica-filled, natural/styrene-butadiene rubber shoe sole compound that also has been used as a model tire compound. Physical testing showed that cure times were decreased, and break strength, tear energy, elongation to break, and cut growth resistance were increased. Thus, surface modification of silica by the in situ polymerization of organic monomers has been shown to be a flexible process capable of producing unique materials useful in improving rubber cure properties and the cured compound physical properties. © 1996 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 55 (1995), S. 1627-1641 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: To improve the performance of rubber compounds using precipitated silica as a reinforcing filler, the silica surface was directly modified by (1) adsorption of a surfactant, (2) adsolubilization of an organic monomer, (3) in situ polymerization of the monomer in the surfactant bilayer, and (4) partial surfactant removal. Silica was thus surface modified with polymerized styrene, isoprene, butadiene, and copolymers. Styrene-butadiene modification afforded the most promising candidate based on evaluation in a silica-filled model tire compound. Compound physical testing showed that cure times were decreased, and break strength, tear energy, elongation to break, and cut growth resistance were increased. Thus, surface modification of silica by the in situ polymerization of organic monomers affords unique materials useful in improving rubber cure properties and cured compound physical properties. © 1995 John Wiley & Sons, Inc.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-12-07
    Description: A new technique has been developed for characterizing gamma-ray emission from a planetary surface in the presence of large background signals generated in a spacecraft. This technique is applied to the analysis of Al gamma rays measured by the MESSENGER Gamma-Ray Spectrometer to determine the abundance of Al on the surface of Mercury. The result (Al/Si = 0.29−0.13+0.05) is consistent with Al/Si ratios derived from the MESSENGER X-Ray Spectrometer and confirms the finding of low Al abundances. The measured abundance rules out a global, lunar-like feldspar-rich crust and is consistent with previously suggested analogs for surface material on Mercury, including terrestrial komatiites, low-iron basalts, partial melts of CB chondrites, and partial melts of enstatite chondrites. Additional applications of this technique include the measurement of other elements on Mercury's surface as well as the analysis of data from other planetary gamma-ray spectrometer experiments.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-01-12
    Description: [1]  A new technique has been developed for characterizing gamma-ray emission from a planetary surface in the presence of large background signals generated in a spacecraft. This technique is applied to the analysis of Al gamma rays measured by the MESSENGER Gamma-Ray Spectrometer to determine the abundance of Al on the surface of Mercury. The result (Al/Si = 0.29 −0.13 +0.05 ) is consistent with Al/Si ratios derived from the MESSENGER X-Ray Spectrometer and confirms the finding of low Al abundances. The measured abundance rules out a global, lunar-like feldspar-rich crust and is consistent with previously suggested analogs for surface material on Mercury, including terrestrial komatiites, low-iron basalts, partial melts of CB chondrites, and partial melts of enstatite chondrites. Additional applications of this technique include the measurement of other elements on Mercury's surface as well as the analysis of data from other planetary gamma-ray spectrometer experiments.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited Mercury for four years until April 2015, revealing its structure, chemical makeup, and compositional diversity. Data from the mission have confirmed that Mercury is a compositional end-member among the terrestrial planets. The X-Ray Spectrometer (XRS) and Gamma-Ray Spectrometer (GRS) on board MESSENGER provided the first detailed geochemical analyses of Mercury's surface. These instruments have been used in conjunction with the Neutron Spectrometer and the Mercury Dual Imaging System to classify numerous geological and geochemical features on the surface of Mercury that were previously unknown. Furthermore, the data have revealed several surprising characteristics about Mercury's surface, including elevated S abundances (up to 4 wt%) and low Fe abundances (less than 2.5 wt%). The S and Fe abundances were used to quantify Mercury's highly reduced state, i.e., between 2.6 and 7.3 log10 units below the Iron-Wustite (IW) buffer. This fO2 is lower than any of the other terrestrial planets in the inner Solar System and has important consequences for the thermal and magmatic evolution of Mercury, its surface mineralogy and geochemistry, and the petrogenesis of the planet's magmas. Although MESSENGER has revealed substantial geochemical diversity across the surface of Mercury, until now, there have been only limited efforts to understand the mineralogical and petrological diversity of the planet. Here we present a systematic and comprehensive study of the potential mineralogical and petrological diversity of Mercury.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-35303 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...