ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4919
    Keywords: NADH oxidase ; protein disulfide-thiol interchange ; dipyridyl-dithio substrates ; plasma membrane ; auxin ; 2,4-dichlorophenoxyacetic acid ; growth ; plant (Glycine max)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Dipyridyl-dithio substrates were cleaved by isolated vesicles of plasma membranes prepared from etiolated hypocotyls of soybean. The cleavage was stimulated by auxins at physiological concentrations. The substrates utilized were principally 2,2′-dithiodippyrine (DTP) and 6,6′-dithiodinicotinic acid (DTNA). The DTP generated 2 moles of 2-pyridinethione whereas the 6,6′-dithiodinicotinic acid generated 2 moles of 6-nicotinylthionine. Both products absorbed at 340 nm. The auxin herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D) stimulated the activity approximately 2-fold to a maximum at about 10 μM. Concentrations of 2,4-D greater than 100 μM inhibited the activity. Indole-3-acetic acid stimulated the activity as well. The growth-inactive auxin, 2,3-dichlorophenoxyacetic acid (2,3-D), was without effect. DTNA cleavage correlated with oxidation of NADH and reduction of protein disulfide bonds reported earlier in terms of location at the external plasma membrane surface, absolute specific activity, pH dependence and auxin specificity. The dipyridyl-dithio substrates provide, for the first time, a direct measure of the disulfide-thiol interchange activity of the protein previously measured only indirectly as an auxin-dependent ability of isolated plasma membrane vesicles to restore activity to scrambled and inactive RNase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...