ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-12
    Description: The Advanced Mirror Technology Development (AMTD) project is in phase 2 of a multiyear effort, initiated in FY 2012. This effort is to mature, by at least a half Technology Readiness Level step, the critical technologies required to enable 4-meter or larger ultraviolet, optical, and infrared (UVOIR) space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD continues to achieve all of its goals and has accomplished all of its milestones to date. This has been achieved by assembling an outstanding team from academia, industry, and government with extensive expertise in astrophysics and exoplanet characterization, and in the design/manufacture of monolithic and segmented space telescopes; by deriving engineering specifications for advanced normal-incidence mirror systems needed to make the required science measurements; and by defining and prioritizing the most important technical problems to be solved. Our results have been presented to the CoPAG and Mirror Tech Days 2013, and proceedings papers of the 2013 and 2014 SPIE Optics & Photonics Symposia have been published.
    Keywords: Optics
    Type: George C. Marshall Space Flight Center Research and Technology Report 2014; Stahl, H. Philip; 58-59; NASA/TM-2015-218204
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Fabrication of a lunar ceramic was conducted according to a statistically designed experiment. The method of cold pressing was used since the consumption of electrical energy is kept to a minimum (a priority in the lunar environment). This traditional fabrication technique also provides an initial data source on which further investigations can be based. Results obtained from using two percent binder, a cold pressing pressure of 276 MPa, and 24 hours sintering time yielded the greatest compressive strength of 247 MPa. Analysis of each variable's influence on the compressive strength is also presented.
    Keywords: NONMETALLIC MATERIALS
    Type: NASA-TM-108465 , NAS 1.15:108465
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: Ceramic matrix composite (CMC) integrally bladed turbine disks (blisks) are being considered for use in various advanced propulsion systems for space vehicles. The successful development of this technology can significantly impact National Aeronautics and Space Administration (NASA) space transportation missions, by enabling new efficient systems that can operate at higher temperatures, while reducing costs. Composite blisks comprised of carbon (C) fibers and a silicon carbide (SiC) ceramic matrix were designed, fabricated, characterized, and tested by a multidisciplinary team involving materials, design, structural analysis, turbomachinery, and nondestructive evaluation representatives from government, academia, and industry during a 4.5 year effort led by the NASA Marshall Space Flight Center (MSFC). The testing of several of these blisks, which were developed in the Simplex Turbopump CMC Blisk ]Program for use in rocket engine turbopumps, was recently completed. CMC blisks offer potential advantages in rocket engine turbopumps including increased safety resulting from increased operating temperature margins and greater pump reliability, and decreased costs resulting from improved turbopump performance. The progress that was achieved in that development effort is reviewed, and some of the technology that could be applied to other advanced space transportation propulsion systems is discussed.
    Keywords: Composite Materials
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: The Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) has successfully applied new materials and fabrication techniques to create actively cooled thrust chambers that operate 200-400 degrees hotter and weigh 50% lighter than conventional designs. In some vehicles, thrust assemblies account for as much as 20% of the engine weight. So, reducing the weight of these components and increasing their operating range will benefit many engines and vehicle designs, including Reusable Launch Vehicle (RLV) concepts. Obviously, copper and steel alloys have been used successfully for many years in the chamber components of thrust assemblies. Yet, by replacing the steel alloys with Polymer Matrix Composite (PMC) and/or Metal Matrix Composite (MMC) materials, design weights can be drastically reduced. In addition, replacing the traditional copper alloys with a Ceramic Matrix Composite (CMC) or an advanced copper alloy (Cu-8Cr-4Nb, also known as GRCop-84) significantly increases allowable operating temperatures. Several small MMC and PMC demonstration chambers have recently been fabricated with promising results. Each of these designs included GRCop-84 for the cooled chamber liner. These units successfully verified that designs over 50% lighter are feasible. New fabrication processes, including advanced casting technology and a low cost vacuum plasma spray (VPS) process, were also demonstrated with these units. Hot-fire testing at MSFC is currently being conducted on the chambers to verify increased operating temperatures available with the GRCop-84 liner. Unique CMC chamber liners were also successfully fabricated and prepared for hot-fire testing. Yet, early results indicate these CMC liners need significantly more development in order to use them in required chamber designs. Based on the successful efforts with the MMC and PMC concepts, two full size "lightweight" chambers are currently being designed and fabricated for hot-fire testing at MSFC in 2001. These "full size" chambers will be similar in size to those used on the X33 engine (RS2200). One will be fabricated with a MMC structural jacket, while the other uses a PMC jacket. Each will be designed for thrust levels of 15,000 pounds in an oxygen/hydrogen environment with liquid hydrogen coolant. Both chambers will use GRCop-84 for its channel wall liner. Each unit is expected to be at least 60% lighter than a conventional design with traditional materials. Hot-fire testing on the full size units in late 2001 will directly compare performance results between a conventional chamber design and these "lightweight" alternatives. The technology developed and demonstrated by this effort will not only benefit next generation RLV programs, but it can be applied to other existing and future engine programs, as well. Efforts were sponsored by the Advanced Space Transportation Program for RLV Focused Technologies. The task team was led by MSFC with additional members from NASA-Glenn Research Center and the Rocketdyne Division of The Boeing Company. Specific materials development and fabrication processes were provided by Aerojet, Lockheed Martin Astronautics, Composite Optics, Inc., Hyper-Therm, Ceramic Composites, Inc., MSE Technology Applications, and Plasma Processes, Inc.
    Keywords: Spacecraft Propulsion and Power
    Type: International Astronautical Congress; Oct 01, 2001 - Oct 05, 2001; Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: For propulsion related applications, materials must be able to demonstrate excellent ablation and oxidation resistance at temperature approaching 3500 C, adequate load bearing capabilities, non-catastrophic failure modes, and ability to withstand transient thermal shock. A potential list of propulsion-material property requirements includes, low density, high elastic modulus, low thermal-expansion coefficient, high thermal conductivity, excellent erosion and oxidation/corrosion resistance, and flaw-insensitivity. In many cases, they will also need to be able to be joined, survive thermal cycling and multi-axial stress states, and for reusable applications, the materials must maintain the above attributes after prolonged exposure to extremely harsh chemical environments. The final and possibly most important attribute for these materials are the need to be lower cost and readily available in large quantities. Recently, Advanced Ceramics Research, Inc. (ACR) has developed low cost, flexible-manufacturing processes for Zr & Hf-based carbon fiber reinforced composites, materials with good oxidation and ablation resistance up to 3500 C. This process, called Continuous Composite Co-extrusion (C(sup 3)), incorporates carbon fibers to fabricate 'in-situ' carbide and boride-matrix/carbon fiber composites. M is a variation of ACR's manufacturing process for low-cost structural ceramic materials called Fibrous Monoliths with carbon fiber reinforcements. Fibrous Monolithic materials have a distinct fibrous texture, consist of intertwined cells of a primary phase, separated by cell boundaries of a tailored secondary phase and show very high fracture energies, damage tolerance, and graceful failure. Since they are monolithic powder based composites; they can be manufactured by conventional powder processing techniques using inexpensive raw materials. This combination of high performance and low cost is a breakthrough that could enable wider application of ceramics in high temperature applications. Typical volume fractions of the two phases are 80 to 95% for the cell phase and 5 to 20% for the interpenetrating cell boundary phase. ACR is currently developing an innovative solid freeform form fabrication (SFF) approach to produce Hf and Zr based ceramic composite components reinforced with continuous carbon fiber tows for critical structural components such as tubes and blisks. The process is simple, robust and will be widely applicable to a number of material systems. This technique was originally developed at the University of Delaware Center for Composite Materials (UD-CCM) for rapid fabrication of polymer matrix composites by a technique called automated tow placement or ATP. The current process is being developed in collaboration with UD-CCM. The paper will detail the freeform fabrication process to create low-cost ceramic fiber reinforced composites for high-temperature applications. The results of mechanical properties and microstructural characterization will be presented, together with examples of complex shapes and parts. It is believed that the process will be able to create complex shaped parts for propulsion applications at an order of magnitude lower cost than current CVI and PIP processes.
    Keywords: Composite Materials
    Type: Composites, Materials and Structures; Jan 22, 2001 - Jan 25, 2001; Cocoa Beach, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: A materials overview of the NASA's Earth-to-Orbit Space Transportation Program is presented. The topics discussed are: Earth-to-Orbit Goals and Challenges; Space Transportation Program Structure; Generations of Reusable Launch Vehicles; Space Transportation Derived Requirements; X 34 Demonstrator; Fastrac Engine System; Airframe Systems; Propulsion Systems; Cryotank Structures; Advanced Materials, Fabrication, Manufacturing, & Assembly; Hot and Cooled Airframe Structures; Ceramic Matrix Composites; Ultra-High Temp Polymer Matrix Composites; Metal Matrix Composites; and PMC Lines Ducts and Valves.
    Keywords: Space Transportation
    Type: Composites, Materials, and Structure; Jan 26, 1999 - Jan 28, 1999; Cocoa Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: For propulsion related applications, materials must be able to demonstrate excellent ablation and oxidation resistance at temperature approaching 3500'C, adequate load bearing capabilities, non-catastrophic failure modes, and ability to withstand transient thermal shock. A potential list of propulsion-material property requirements includes, low density, high elastic modulus, low thermal-expansion coefficient, high thermal conductivity, excellent erosion and oxidation/corrosion resistance, and flaw-insensitivity. In many cases, they will also need to be able to be joined, survive thermal cycling and multi-axial stress states, and for reusable applications, the materials must maintain the above attributes after prolonged exposure to extremely harsh chemical environments. The final and possibly most important attribute for these materials are the need to be lower cost and readily available in large quantities. Recently, Advanced Ceramics Research, Inc. (ACR) has developed low cost, flexible- manufacturing processes for Zr & Hf-based carbon fiber reinforced composites, materials with good oxidation and ablation resistance up to 3500 C. This process, called Continuous Composite Co-extrusion (C(sup 3)), incorporates carbon fibers to fabricate 'in-situ' carbide and boride-matrix/carbon fiber composites. This is a variation of ACR's manufacturing process for low-cost structural ceramic materials called Fibrous Monoliths With carbon fiber reinforcements. Fibrous Monolithic materials have a distinct fibrous texture, consist of intertwined cells of a primary phase, separated by cell boundaries of a tailored secondary phase and show very high fracture energies, damage tolerance, and graceful failure. Since they are monolithic powder based composites-, they can be manufactured by conventional powder processing techniques using inexpensive raw materials. This combination of high performance and low cost is a breakthrough that could enable wider application of ceramics in high temperature applications. Typical volume fractions of the two phases are 80 to 95% for the cell phase and 5 to 20% for the interpenetrating cell boundary phase. ACR is currently developing an innovative solid freeform form fabrication (SFF) approach to produce Hf and Zr based ceramic composite components reinforced with continuous carbon fiber tows for critical structural components such as tubes and blisks. The process is simple, robust and will be widely applicable to a number of material systems. This technique was originally developed at the University of Delaware Center for Composite Materials (UD-CCM) for rapid fabrication of polymer matrix composites by a technique called automated tow placement or ATP. The current process is being developed in collaboration with UD-CCM. The paper will detail the freeform fabrication process to create low-cost ceramic fiber reinforced composites for high-temperature applications. The results of mechanical properties and microstructural characterization will be presented, together with examples of complex shapes and parts. It is believed that the process will be able to create complex shaped parts for propulsion applications at an order of magnitude lower cost than current CVI and PIP process.
    Keywords: Composite Materials
    Type: Aerospace Materials, Processes and Environmental Techniques; Sep 18, 2000 - Sep 21, 2000; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: Ceramic Matrix Composites (CMCS) offer the potential for significant weight savings and improved performance for a range of propulsion components utilizing refractory materials. This paper describes the fabrication and testing of functionally graded CMCs produced via a low cost process that represents an order of magnitude cost savings over conventionally fabricated CMCS. Test cylinders were fabricated, characterized and evaluated during exposure to high thermal fluxes of up to 10MW/meters squared at the Laser Hardened Materials Evaluation Laboratory (LHMEL). The bulk density of the CMC tubes was approximately 2.2 grams per cubic centimeters. The performance of cryogenically cooled CMCs was compared with uncooled CMCs against similar thermal loads, and fundamental property data collected for this relatively new breed of CMC. Finally, test thrust cells were fabricated from the functionally graded composite and tested using liquid H2 and O2 propellants at NASA Glen.
    Keywords: Nonmetallic Materials
    Type: Space 2000 Technology Conference and Exposition; Sep 19, 2000 - Sep 21, 2000; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: This is a viewgraph presentation which reviews the progress in the development of lightweight chambers for thrust cell applications. The objective of the program is to reduce thrust assembly weights to create lighter engines which will allow for an increase in the payload. Using new composite materials and fabrication technologies the team has constructed 7 different thrust cell demonstration units. The materials used in the demonstration units are reviewed.
    Keywords: Spacecraft Propulsion and Power
    Type: AIAA Paper 2000-3131 , Joint Propulsion; Jul 17, 2000 - Jul 19, 2000; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Description: NASA has recently completed testing of a ceramic matrix composite (CMC), integrally bladed disk (blisk) for rocket engine turbopumps. The turbopump's main function is to bring propellants from the tank to the combustion chamber at optimal pressures, temperatures, and flow rates. Advantages realized by using CMC blisks are increases in safety by increasing temperature margins and decreasing costs by increasing turbopump performance. A multidisciplinary team, involving materials, design, structural analysis, nondestructive inspection government, academia, and industry experts, was formed to accomplish the 4.5 year effort. This article will review some of the background and accomplishments of the CMC Blisk Program relative to the benefits of this technology.
    Keywords: Spacecraft Propulsion and Power
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...