ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-19
    Description: Dielectric constants of microwave substrates are required in the design of superconducting microwave circuits at various temperatures. In this paper, the results are reported of a study of the complex permittivity of the newly developed lanthanum aluminate (LaAlO3) substrate, in the 20 to 300 K temperature range at frequencies from 26.5 to 40.0 GHz. The value of the complex permittivity was obtained by measuring the sample scattering parameters using a microwave waveguide technique. It is observed that, while the dielectric constant did not change appreciably with frequency, its value decreased by approximately 14 percent from room temperature to 20 K.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: Microwave and Optical Technology Letters (ISSN 0895-2477); 3; 11-13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: The discovery of high temperature superconductor oxides has raised the possibility of a new class of millimeter and microwave devices operating at temperatures considerably higher than liquid helium temperatures. Therefore, materials properties such as conductivity, current density, and sheet resistance as a function of temperature and frequency, possible anisotropies, moisture absorption, thermal expansion, and others, have to be well characterized and understood. The millimeter wave response was studied of laser ablated YBa2Cu3O(7-x)/LaAlO3 thin films as a function of temperature and frequency. In particular, the evaluation of their microwave conductivity was emphasized, since knowledge of this parameter provides a basis for the derivation of other relevant properties of these superconducting oxides, and for using them in the fabrication of actual passive circuits. The microwave conductivity for these films was measured at frequencies from 26.5 to 40.0 GHz, in the temperature range from 20 to 300 K. The values of the conductivity are obtained from the millimeter wave power transmitted through the films, using a two fluid model.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: NASA, Goddard Space Flight Center, AMSAHTS 1990: Advances in Materials Science and Applications of High Temperature Superconductors; p 78-81
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: The discovery of high temperature superconductor oxides has raised the possibility of a new class of millimeter and microwave devices operating at temperatures considerably higher than liquid helium temperatures. Therefore, materials properties such as conductivity, current density, and sheet resistance as a function of temperature and frequency, possible anisotropies, moisture absorption, thermal expansion, and others, have to be well characterized and understood. The millimeter wave response of laser ablated YBa2Cu3O(7-delta)/LaAlO3 thin films was studied as a function of temperature and frequency. In particular, the evaluation of their microwave conductivity was emphasized, since knowledge of this parameter provides a basis for the derivation of other relevant properties of these superconducting oxides, and for using them in the fabrication of actual passive circuits. The microwave conductivity for these films was measured at frequencies from 26.5 to 40.0 GHz, in the temperature range from 20 to 300 K. The values of the conductivity are obtained from the millimeter wave power transmitted through the films, using a two fluid model.
    Keywords: SOLID-STATE PHYSICS
    Type: NASA. Goddard Space Flight Center, AMSAHTS 1990: Advances in Materials Science and Applications of High Temperature Superconductors; p 261-269
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: Secondary-electron-emission losses in multistage depressed collectors (MDC's) and their effects on overall traveling-wave-tube (TWT) efficiency were investigated. Two representative TWT's and several computer-modeled MDC's were used. The experimental techniques provide the measurement of both the TWT overall and the collector efficiencies. The TWT-MDC performance was optimized and measured over a wide range of operating conditions, with geometrically identical collectors, which utilized different electrode surface materials. Comparisons of the performance of copper electrodes to that of various forms of carbon, including pyrolytic and iisotropic graphites, were stressed. The results indicate that: (1) a significant improvement in the TWT overall efficiency was obtained in all cases by the use of carbon, rather than copper electrodes, and (2) that the extent of this efficiency enhancement depended on the characteristics of the TWT, the TWT operating point, the MDC design, and collector voltages. Ion textured graphite was found to be particularly effective in minimizing the secondary-electron-emission losses. Experimental and analytical results, however, indicate that it is at least as important to provide a maximum amount of electrostatic suppression of secondary electrons by proper MDC design. Such suppression, which is obtained by ensuring that a substantial suppressing electric field exists over the regions of the electrodes where most of the current is incident, was found to be very effective. Experimental results indicate that, with proper MDC design and the use of electrode surfaces with low secondary-electron yield, degradation of the collector efficiency can be limited to a few percent.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: NASA-TP-2622 , E-3062 , NAS 1.60:2622
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-05-23
    Description: Thermal radiation shield contains escaping heat from an induction furnace. The shield consists of a sheet of refractory metal foil and a loosely packed mat of refractory metal fibers in a concentric pattern. This shielding technique can be used for high temperature ovens, high temperature fluid lines, and chemical reaction vessels.
    Keywords: PHYSICAL SCIENCES
    Type: LEW-202
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-05-29
    Description: Rotating magnetic pump with redesigned pump cell is used for pumping mercury. The modified pump has better electrical continuity, more efficient heat removal, and good wetting characteristics in the mercury flow channel.
    Keywords: MECHANICS
    Type: LEW-276
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-05-29
    Description: Monometallic diaphragm valve is used for corrosive and high temperature fluid flow control. The body, diaphragm, and plug of the valve are welded together to form an integral leakproof unit for containing the fluid as it passes through the valve from inlet to outlet.
    Keywords: MECHANICS
    Type: LEW-304
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: A description is given of a spent particle collector which maintains structural integrity when raised to a high temperature although constructed of materials having widely different coefficients of expansion. The collector is comprised of one or more axisymmetric stages, each stage comprising a subassembly. A subassembly includes an inner pyrolytic graphite ring, a transition ring, a ceramic insulator ring and an outer metal ring which forms part of the wall of the collector. Each transition is of a ductile metal having high thermal conductivity and is provided with an annular sputter shield wall extending toward the source of spent particles and, where necessary, a trough in the other surface to enclose the sputter shield of the next adjacent transition ring. A plurality of radial extending slots are provided in a transition ring to form segments which are retained in their position by the sputter shield.
    Keywords: MECHANICAL ENGINEERING
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: An electron beam test facility, which consists of a precision multidimensional manipulator built into an ultra-high-vacuum bell jar, was designed, fabricated, and operated at Lewis Research Center. The position within the bell jar of a Faraday cup which samples current in the electron beam under test, is controlled by the manipulator. Three orthogonal axes of motion are controlled by stepping motors driven by digital indexers, and the positions are displayed on electronic totalizers. In the transverse directions, the limits of travel are approximately + or - 2.5 cm from the center with a precision of 2.54 micron (0.0001 in.); in the axial direction, approximately 15.0 cm of travel are permitted with an accuracy of 12.7 micron (0.0005 in.). In addition, two manually operated motions are provided, the pitch and yaw of the Faraday cup with respect to the electron beam can be adjusted to within a few degrees. The current is sensed by pulse transformers and the data are processed by a dual channel box car averager with a digital output. The beam tester can be operated manually or it can be programmed for automated operation. In the automated mode, the beam tester is controlled by a microcomputer (installed at the test site) which communicates with a minicomputer at the central computing facility. The data are recorded and later processed by computer to obtain the desired graphical presentations.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: NASA-TP-1836 , E-582
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The High-Temperature-Superconductivity (HTS) group of the RF Technology Branch, Space Electronics Division, is actively involved in the fabrication and cryogenic characterization of planar microwave components for space applications. This process requires fast, reliable, and accurate measurement techniques not readily available. A new calibration standard/test fixture that enhances the integrity and reliability of the component characterization process has been developed. The fixture consists of 50 omega thru, reflect, delay, and device under test gold lines etched onto a 254 microns (0.010 in) thick alumina substrate. The Thru-Reflect-Line (TRL) fixture was tested at room temperature using a 30 omega, 7.62 mm (300 mil) long, gold line as a known standard. Good agreement between the experimental data and the data modelled using Sonnet's em(C) software was obtained for both the return (S(sub 11)) and insertion (S( 21)) losses. A gold two-pole bandpass filter with a 7.3 GHz center frequency was used as our Device Under Test (DUT), and the results compared with those obtained using a Short-Open-Load-Thru (SOLT) calibration technique.
    Keywords: Electronics and Electrical Engineering
    Type: NASA-CR-204552 , NAS 1.26:204552 , Advances in Cryogenic Engineering; 41; 1731-1738
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...