ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 1998-03-25
    Description: Solutions are determined for normally incident non-breaking linear gravity waves in a perfect fluid over a porous plane bed of arbitrary slope α both with and without bed friction. For simplicity, computations are restricted to α = π/2m,m ε N. Modifications to wave height transformations due to percolation and to friction are determined for a variety of slopes and coefficients. The effect on the reflection coefficient Rf is also studied and excellent qualitative agreement is found with recent work on damping and reflection by permeable structures. In particular, for a choice of parameters, the Rf response is determined in closed form.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-06-10
    Description: Trapped waves generated by oscillatory sources or dipoles placed above a plane infinite beach are examined within the framework of a (classical) non-hydrostatic but linear theory. This is achieved by solving a boundary-value problem where the boundary conditions are specified on the free surface and on the bottom. Integral expressions are derived for the complex potential for the cases where the sources or dipoles are strategically positioned to mimic the presence of solid bodies, a phenomenon manifested by the observation of a streamline enclosing the source or dipole. The precise positioning is governed by the further requirement of no radiating waves and, for the case where the beach is a vertical cliff, some recent results are confirmed here, whilst new results obtained show that infinitely many submerged wave trapping bodies exist and do so over a far greater range of values of dipole positions than was previously thought to be the case. The situation for surface sources and for submerged dipoles is therefore essentially different. For the former, infinitely many closed streamlines exist for each of the denumerably infinite set of source positions. For the latter, it is found instead that only one closed streamline exists, but this is for each of a non-denumerably infinite set of dipole positions. The expressions obtained for the beach are used for the two cases of a surface source and a submerged dipole to compute streamlines and stagnation points for model beaches of chosen steep slope. In particular, a (randomly chosen) submerged closed streamline is calculated for the beach of angle 45° thereby establishing a new case of non-uniqueness for the water wave problem on a beach.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-11-07
    Description: A classical approach to extending the validity of Airy's dispersion relation for surface gravity waves by Friedrichs (1948) to gentle slopes (of special inclinations) is here re-examined with extended small-slope asymptotics using the full linear harmonic function theory combined with the method of steepest descent. A new dispersion relation emerges that appears to give significantly increased accuracy over sloping beds when tested on the plane beach problem with various forms of the mild-slope equation (MSE) and global error reductions of the order 50% are noted in some 'from deep to shore' computations. Unlike the classical formula, the new formula predicts a discontinuous wavenumber at a place where the bottom slope is discontinuous. Preliminary tests examining the reflection coefficient with the basic (early version) MSE over ramp-type profiles indicate that this is not a major problem and numerical results using wavenumber calculated by the new dispersion relation are qualitatively similar to those of the modified MSE (MMSE) developed in Chamberlain & Porter (1995). When the new formula is applied (with mass conservation) to the MMSE on the ramp, results are almost identical to those of a full linear model for inclines having a gradient up to 8:1. It is also shown that the dominant asymptotic analysis, responsible for the new formula, is valid for all slope angles α 〈 π/2 and not just the special angles considered by Friedrichs. © 2005 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-03-06
    Description: The effect is examined on infinitesimal standing waves over a plane beach when restricted by the arbitrary placing of a finite rigid (or permeable) lid of length ℓ on the undisturbed surface. A uniformly bounded solution for the potential function is obtained by a Green's function method. The Green's function is derived and manipulated, for subsequent computational expedience, from a previously known solution for the problem of an oscillating line source placed at an arbitrary location in the sector. Applications are made to both the case of plate anchored at the origin and the case of plate anchored some distance at sea (drifted plate problem). In both cases water column potentials and equipotentials are constructed from the numerical solution of a Fredholm equation of the second kind by finite difference discretization. Solutions are further extended to include the logarithmically singular standing wave, combination with which allows the construction of progressing waves. Computation of initially incoming progressing wave envelopes demonstrates the emergence of a partially standing wave pattern shoreward of the plate. There is no difficulty, in principle, to extend the theory to any number of plates, and this is verified by computation for the case of two plates. A new shoreline radiation condition is constructed to allow formulation, in the usual way, of the reflection/transmission problem for the plate, and results are in good qualitative agreement with a similar model on a horizontal plane bed. It is argued that the Green's function constructed here could be used in a number of diverse problems, of this linear nature, where all, or part, of the submerged boundary is that of a plane incline. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...