ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-05-02
    Description: When Staphylococcus aureus undergoes cytokinesis, it builds a septum, generating two hemispherical daughters whose cell walls are only connected via a narrow peripheral ring. We found that resolution of this ring occurred within milliseconds ("popping"), without detectable changes in cell volume. The likelihood of popping depended on cell-wall stress, and the separating cells split open asymmetrically, leaving the daughters connected by a hinge. An elastostatic model of the wall indicated high circumferential stress in the peripheral ring before popping. Last, we observed small perforations in the peripheral ring that are likely initial points of mechanical failure. Thus, the ultrafast daughter cell separation in S. aureus appears to be driven by accumulation of stress in the peripheral ring and exhibits hallmarks of mechanical crack propagation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Xiaoxue -- Halladin, David K -- Rojas, Enrique R -- Koslover, Elena F -- Lee, Timothy K -- Huang, Kerwyn Casey -- Theriot, Julie A -- 1S10OD01227601/OD/NIH HHS/ -- DP2OD006466/OD/NIH HHS/ -- P50-GM107615/GM/NIGMS NIH HHS/ -- R01 AI036929/AI/NIAID NIH HHS/ -- R01-AI36929/AI/NIAID NIH HHS/ -- R37 AI036929/AI/NIAID NIH HHS/ -- T32 GM007276/GM/NIGMS NIH HHS/ -- T32-GM007276/GM/NIGMS NIH HHS/ -- U54-GM072970/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 May 1;348(6234):574-8. doi: 10.1126/science.aaa1511.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Stanford University, Stanford, CA 94305, USA. Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA. Howard Hughes Medical Institute (HHMI), Stanford University School of Medicine, Stanford, CA 94305, USA. ; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA. Howard Hughes Medical Institute (HHMI), Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA. ; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA. Howard Hughes Medical Institute (HHMI), Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. ; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA. Howard Hughes Medical Institute (HHMI), Stanford University School of Medicine, Stanford, CA 94305, USA. ; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. ; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. ; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA. Howard Hughes Medical Institute (HHMI), Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA. theriot@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25931560" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Wall/physiology/ultrastructure ; *Cytokinesis ; Microscopy, Electron, Scanning ; Microscopy, Video ; Staphylococcus aureus/cytology/*physiology/ultrastructure ; Stress, Mechanical ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-01-18
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-02-02
    Description: We analyze the response of a single nucleosome to tension, which serves as a prototypical biophysical measurement where tension-dependent deformation alters transition kinetics. We develop a statistical-mechanics model of a nucleosome as a wormlike chain bound to a spool, incorporating fluctuations in the number of bases bound, the spool orientation, and the conformations of the unbound polymer segments. With the resulting free-energy surface, we perform dynamic simulations that permit a direct comparison with experiments. This simple approach demonstrates that the experimentally observed structural states at nonzero tension are a consequence of the tension and that these tension-induced states cease to exist at zero tension. The transitions between states exhibit substantial deformation of the unbound polymer segments. The associated deformation energy increases with tension; thus, the application of tension alters the kinetics due to tension-induced deformation of the transition states. This mechanism would arise in any system where the tether molecule is deformed in the transition state under the influence of tension.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...