ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The budgets of momentum, heat and moisture of the atmospheric boundary layer overlying the melting zone of the west Greenland ice sheet during an 8-day period in summer are calculated. To do so, the governing budget equations are derived and presented in terms of vertically averaged quantities. Moreover, stationarity is assumed in the present study. Measurements collected during the GIMEX-91 experiment are used to calculate the contribution of the different terms in the equations to the budget. During summer, a well developed katabatic wind system is present over the melting zone of the Greenland ice sheet. The budgets show that advection in the katabatic layer is small for momentum, heat and humidity, when the horizontal length scale of the integration area is sufficiently large (〉50 km). This indicates that in principle one-dimensional atmospheric models can be used to study the boundary layer over the melting zone of the Greenland ice sheet. The background stratification plays a crucial role in the heat and moisture budget. Vertical divergence of longwave radiation provides one-third and the turbulent flux of sensible heat the rest of the cooling of the boundary layer. Moisture is added to the boundary layer by evaporation which is a significant term in the moisture budget. Negative buoyancy (katabatic forcing) dominates the momentum budget in the downslope direction. Coriolis forcing is important, stressing the large spatial scale of the katabatic winds on the Greenland ice sheet.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 86 (1998), S. 63-87 
    ISSN: 1573-1472
    Keywords: Stratocumulus ; Mass flux ; Lateral entrainment ; Turbulence ; Conditional sampling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A mass-flux approach is applied to observational data obtained in a convective boundary layer topped with stratocumulus clouds. The observational data were obtained from aircraft measurements during the Atlantic Stratocumulus Transition Experiment (ASTEX). A conditional sampling method is used to calculate average updraft and downdraft values. The vertical fluxes calculated with the mass-flux approach are found to be proportional to the real (measured) fluxes, with a proportionality factor being about 0.6. This value is predicted by theory for two variables having a joint Gaussian distribution function; proportionality factor = 2π-1 ≈ 0.637. The horizontal fractional entrainment and detrainment rates calculated from the data (ε ≈ 1–2 × 10-2 m-1) are an order of magnitude higher than the rates obtained by large eddy simulations for cumulus convection (ε ≈ 2–3 × 10-3 m-1) and two orders of magnitude higher than those used in modelling cumulus convection with a mass-flux scheme in an operational weather forecast model (ε ≈ 3 × 10-4 m-1). A numerical mass-flux model for the thermodynamics was developed and showed that results are in good agreement when compared with measured profiles of the liquid water content.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 92 (1999), S. 37-63 
    ISSN: 1573-1472
    Keywords: Energy balance ; Glacier ; Katabatic flow ; Stable boundary layer ; Turbulence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Turbulence measurements performed in a stable boundary layer over the sloping ice surface of the Vatnajökull in Iceland are described. The boundary layer, in which katabatic forces are stronger than the large-scale forces, has a structure that closely resembles that of a stable boundary layer overlying a flat land surface, although there are some important differences. In order to compare the two situations the set-up of the instruments on an ice cap in Iceland was reproduced on a flat grass surface at Cabauw, the Netherlands. Wind speed and temperature gradients were calculated and combined with flux measurements made with a sonic anemometer in order to obtain the local stability functions φm and φh as a function of the local stability parameter z/L. Unlike the situation at Cabauw, where φm was linear as a function of z/L, in the katabatically forced boundary layer, the dependence of φm on stability was found to be non-linear and related to the height of the wind maximum. Thermal stratification and the depth of the stable boundary layer however seem to be rather similar under these two different forcing conditions. Furthermore, measurements on the ice were used to construct the energy balance. These showed good agreement between observed melt and components contributing to the energy balance: net radiation (supplying 55% of the energy), sensible heat flux (30%) and latent heat flux (15%). Local sources and sinks in the turbulent kinetic energy budget are summed and indicate a reasonable balance in near-neutral conditions but not in more stable situations. The standard deviation of the velocity fluctuations σu, σv, and σw, can be scaled satisfactorily with the local friction velocity u* and the standard deviation of the temperature fluctuation σθ with the local temperature scale θ*.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 90 (1999), S. 447-477 
    ISSN: 1573-1472
    Keywords: Fog ; Radiative cooling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The effect of longwave radiation on the structure the clear stable boundary layer (SBL) is examined. Special emphasis is given to radiative cooling near the surface and the top of the boundary layer and its impact on the heat flux profile. Further, the formation, growth and dissipation of fog in the SBL are studied both from observations and from a one-dimensional ensemble averaged turbulence closure model. The model is compared with detailed observations that were made for both a shallow (about 30 m) radiation fog and a deep (about 200 m) fog layer at the 200-m tower at Cabauw in the Netherlands. The model describes adequately the most important mechanisms occurring during the fog evolution. In this study special attention is given to the parameterization of the vegetation, which is important for a good representation of the (minimum) air temperature. The influence of turbulence transport, longwave radiative cooling and gravitational droplet settling on the fog evolution is described. The study demonstrates the need for more accurate measurements of turbulence quantities, especially the master length scale, in a variety of SBLs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-1987
    Keywords: atmospheric turbulent reacting flows ; entrainment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The exchange of chemical species between the atmospheric boundary layer and the reservoir layer is investigated by means of an analytical solution of the conservation equation of a decaying chemical species. The exchange mechanism is governed by two parameters: the Damköhler number (the ratio of the turbulence time scale to the chemical time scale) and the ratio of a concentration scale in the atmospheric boundary layer to the concentration in the reservoir layer. Depending on the value of these two parameters, the exchange flux between the two layers can vary in sign and by several orders of magnitude. The study demonstrates to what extent chemical transformation determines the transfer of chemical species between the atmospheric boundary layer and the reservoir layer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 16 (1993), S. 145-155 
    ISSN: 1573-0662
    Keywords: Second-order modelling technique ; turbulence ; pollutants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract A second-order modelling technique is used to investigate the influence of turbulence on chemical reactions. The covariance and variance equations for the NO-O3-NO2 system are developed as a function of the ratio of the timescale of turbulence (τ t ) and the timescale of chemistry (τCh): the first Damköhler number (τ t /τCh). Special attention is given to the calculation of the covariance between NO and O3 normalized by the product of their means, the so-called intensity of segregation (I S ). This parameter quantifies the state of mixing of two chemical species. The intensity of segregation is calculated as a function of the flux of NO and the first Damköhler number. The model results presented illustrate the importance of taking the effect of turbulence on chemical reactions into account for higher values of the NO flux, for values of the ratio O3/NO larger than 12.5 and for values of the ratio τ t /τCH larger than 0.1. For such cases, the effective reaction rates are slower than if the chemical species are assumed to be uniformly mixed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 16 (1993), S. 231-255 
    ISSN: 1573-0662
    Keywords: Actinic flux ; photodissociation ; clouds ; UV radiation ; nitrogen dioxide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The role of clouds in photodissociation is examined by both modelling and observations. It is emphasized that the photodissociation rate is proportional to the actinic flux rather than to the irradiance. The actinic flux concerns the energy that is incident on a molecule, irrespective of the direction of incidence. The irradiance concerns the energy that is incident on a plane. As far as the modelling aspect is concerned, a multi-layer delta-Eddington model is used to calculate irradiances, actinic fluxes, and photodissociation rates of nitrogen dioxide J(NO2) as a function of height in inhomogeneous atmospheres. For the considered wavelength interval [290–420 nm], Rayleigh scattering, ozone absorption, and Mie scattering and absorption by cloud drops and aerosols should be taken into account. Further, a three-layer model is used to calculate the actinic flux above and below a cloud, relative to the incident flux, in terms of cloud albedo, zenith angle, and the albedo of the underlying and overlying atmosphere. Cloud albedo is mainly determined by cloud optical thickness. An expression for the incloud actinic flux is given as a function of in-cloud optical thickness. The three-layer model seems to be a useful model for the estimation of photodissociation rates in dispersion models. It is stressed that both models in their present form cannot handle partial cloudiness. It is shown that if no clouds are present, the actinic flux depends primarily on solar zenith angle. Further, the incident flux at the top of the atmosphere diminishes downward into the atmosphere due to the increasing effect of scattering. Therefore, the actinic flux usually increases with height, although above clouds the actinic flux sometimes decreases with height due to a large contribution of the upward scattered light. For cloudy atmospheres, another important parameter with respect to the actinic flux is added: cloud optical thickness. Cloud optical thickness determines cloud albedo. It can be shown that incloud characteristics and cloud height are less important while describing the effect of a cloud on the actinic flux (outside the cloud). The in-cloud values of the actinic flux can exceed the values outside the cloud. Finally, using the photostationary state relationship, a comparison is performed between model results and ground-based measurements as well as in-cloud air craft measurements.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 61 (1992), S. 375-387 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract It is shown that K-theory has to be modified for chemical systems that react with time scales similar to the turbulence time scale. In such systems, the value of the exchange coefficient depends not only on the turbulence parameters, but also on the chemical reaction rates. As an example, the NO-O3-NO2 chemical system is studied. Using second-moment equations, new flux-gradient relationships for the neutral atmospheric surface layer are obtained which depend on the time scale ratios of turbulence (Τ t ) and chemical reactions (Τ ch), i.e., reactive K-theory. Within the framework of this reactive K-theory, the flux of a chemical species is both a function of the concentration gradients of the three chemical species involved and of the ratio of the time scale of turbulence to the time scale of chemistry. In the special case of slow chemistry (Τ t ≪Τch) inert K-theory is applicable. The reactive exchange coefficients are implemented in a surface-layer model that calculates the flux and concentration profiles of the three chemical species. The results of the calculations of the effective exchange coefficients are different for reactive K-theory and inert K-theory; the differences are largest for nitric oxide, but smaller for ozone and nitrogen dioxide.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 62 (1993), S. 417-432 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The role of clouds in photodissociation is examined by both modeling and observations. It is emphasized that the photodissociation rate is proportional to the actinic flux rather than to the irradiance. (The actinic flux concerns the energy that is incident on a molecule, irrespective of the direction of incidence. The irradiance concerns the energy that is incident on a plane.) A 3-layer model is used to calculate the actinic flux above and below a cloud, relative to the incident flux, in terms of cloud albedo, zenith angle and the albedo of the underlying and overlying atmosphere. Cloud albedo is mainly determined by cloud optical thickness. An expression for the in-cloud actinic flux is given as a function of in-cloud optical thickness. The 3-layer model seems to be an useful model for estimation of photodissociation rates in dispersion models. Further, a multi-layer delta-Eddington model is used to calculate irradiances, actinic fluxes and photodissociation rates of nitrogen dioxide J(NO2) as a function of height in inhomogeneous atmospheres. For the considered wavelength interval [290–420 nm], Rayleigh scattering, ozone absorption and Mie scattering and absorption by cloud drops and aerosols should be taken into account. It is stressed that both models are one-dimensional and as such are unable to deal with partial cloudiness. It is shown that if no clouds are present, the actinic flux depends primarily on the solar zenith angle. The actinic flux usually increases with height. For cloudy atmospheres, another important parameter with respect to the actinic flux is added: cloud optical thickness, which determines cloud albedo. It can be shown that in-cloud characteristics and cloud height are less important in describing the effect of a cloud on the actinic flux (outside the cloud). The in-cloud values of the actinic flux can exceed the values outside the cloud. Finally, using the photostationary state relationship, good agreement is found between model results and aircraft measurements.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1998-01-01
    Print ISSN: 0006-8314
    Electronic ISSN: 1573-1472
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...