ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2018-06-08
    Description: Satellites of the Global Positioning System (GPS) can be used to provide precise position and velocity information for receivers on the surface of the Earth, in aircraft, or in low-Earth orbit.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: Researchers have used data from the GRAIL mission to the Moon to make the first in-flight verification of ultra-stable oscillators (USOs) with Allan deviation below 10 13 for 1-to-100-second averaging times. USOs are flown in space to provide stable timing and/or navigation signals for a variety of different science and programmatic missions. The Gravity Recovery and Interior Laboratory (GRAIL) mission is flying twin spacecraft, each with its own USO and with a Ka-band crosslink used to measure range fluctuations. Data from this crosslink can be combined in such a way as to give the relative time offsets of the two spacecrafts USOs and to calculate the Allan deviation to describe the USOs combined performance while orbiting the Moon. Researchers find the first direct in-space Allan deviations below 10(exp -13) for 1-to-100-second averaging times comparable to pre-launch data, and better than measurements from ground tracking of an X-band carrier coherent with the USO. Fluctuations in Earth s atmosphere limit measurement performance in direct-to-Earth links. Inflight USO performance verification was also performed for GRAIL s parent mission, the Gravity Recovery and Climate Experiment (GRACE), using both Kband and Ka-band crosslinks.
    Keywords: Man/System Technology and Life Support
    Type: NPO-48705 , NASA Tech Briefs, Februrary 2013; 5
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: In a proposed digital signal-processing technique, a radio receiver would control the phasing of a phased-array antenna to aim the peaks of the antenna radiation pattern toward desired signal sources while aiming the nulls of the pattern toward interfering signal sources. The technique was conceived for use in a Global Positioning System (GPS) receiver, for which the desired signal sources would be GPS satellites and typical interference sources would be terrestrial objects that cause multipath propagation. The technique could also be used to optimize reception in spread-spectrum cellular-telephone and military communication systems. During reception of radio signals in a conventional phased-array antenna system, received signals at their original carrier frequencies are phase-shifted, then combined by analog circuitry. The combination signal is then subjected to down-conversion and demodulation. In a system according to the proposed technique (see figure), the signal received by each antenna would be subjected to down-conversion, spread-spectrum demodulation, and correlation; this processing would be performed separately from, and simultaneously with, similar processing of signals received by the other antenna elements. Following analog down-conversion to baseband, the signals would be digitized, and all subsequent processing would be digital. In the digital process, residual carriers would be removed and each signal would be correlated with a locally generated model pseudorandum-noise code, all following normal GPS procedure. As part of this procedure, accumulated values would be added in software and the resulting signals would be phase-shifted in software by the amounts necessary to synthesize the desired antenna directional gain pattern of peaks and nulls. The principal advantage of this technique over the conventional radio-frequency-combining technique is that the parallel digital baseband processing of the signals from the various antenna elements would be a relatively inexpensive and flexible means for exploiting the inherent multiple-peak/multiple-null aiming capability of a phased-array antenna. In the original intended GPS application, the peaks and nulls could be directed independently for each GPS signal being tracked by the GPS receiver. The technique could also be applied to other code-division multiple-access communication systems.
    Keywords: Man/System Technology and Life Support
    Type: NPO-20031 , NASA Tech Briefs, July 2006; 11-12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: In a system according to the proposed technique, the signal received by each element of the array antenna would be subjected to downconversion, and spread-spectrum demodulation and correlation as necessary; this processing would be performed separately from, and simultaneously with, similar processing of signals received by the other antenna elements. For the GPS implementation, following downconversion to baseband, the signals would be digitized, and all subsequent processing would be digital. In In the digital process, residual carriers would be removed and each signal would be correlated with a locally generated model pseudo random-noise code, all following normal GPS procedure. As part of this procedure, accumulated values would be added in software and the resulting signals would be phase-shifted in software by the amounts necessary to synthesize the desired antenna directional gain pattern of peaks and nulls. The principal advantage of this technique over the conventional radio-frequency-combining technique is that the parallel digital baseband processing of the signals from the various antenna elements would be a relatively inexpensive and flexible means for exploiting the inherent multiple-peak/multiple-null aiming capability of a phased-array antenna. In the original intended GPS application, the peaks and nulls could be directed independently for each GPS signal being tracked by the GPS receiver. This will improve the SNR simultaneously for each GPS signal being tracked while steering multiple nulls toward sources of interference. The technique could also be applied to other code-division multiple-access communication systems.
    Keywords: Communications and Radar
    Type: US-Patent-6,828,935 , US-Patent-Appl-SN-176761 , NASA-Case-NPO-200331-1CU
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-28
    Description: In a system according to the proposed technique (see figure), the signal received by each element of the array antenna would be subjected to downconversion, and spread-spectrum demodulation and correlation as necessary; this processing would be performed separately from, and simultaneously with, similar processing of signals received by the other antenna elements. For the GPS implementation, following downconversion to baseband, the signals would be digitized, and all subsequent processing would be digital. In the digital process, residual carriers would be removed and each signal would be correlated with a locally generated model pseudo random-noise code, all following normal GPS procedure. As part of this procedure, accumulated values would be added in software and the resulting signals would be phase-shifted in software by the amounts necessary to synthesize the desired antenna directional gain pattern of peaks and nulls. The principal advantage of this technique over the conventional radio-frequency-combining technique is that the parallel digital baseband processing of the signals from the various antenna elements would be a relatively inexpensive and flexible means for exploiting the inherent multiple-peak/multiple-null aiming capability of a phased-array antenna. In the original intended GPS application, the peaks and nulls could be directed independently for each GPS signal being tracked by the GPS receiver. This will improve the SNR simultaneously for each GPS signal being tracked while steering multiple nulls toward sources of interference. The technique could also be applied to other code-division multiple-access communication systems.
    Keywords: Communications and Radar
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: ST-7 is developing enabling drag-free control technology with low noise micro-thrusters and drag-free control algorithms. The flight computer & dynamic control software are complete, and colloid micro-newton thrusters are beginning ground-based performance testing.
    Keywords: Avionics and Aircraft Instrumentation
    Type: Earth Science Technology Conference; Jun 27, 2006 - Jun 29, 2006; College Park, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The Space Technology-7 Disturbance Reduction System (DRS) is an experiment package aboard the European Space Agency (ESA) LISA Pathfinder spacecraft. LISA Pathfinder launched from Kourou, French Guiana on December 3, 2015. The DRS is tasked to validate two specific technologies: colloidal micro-Newton thrusters (CMNT) to provide low-noise control capability of the spacecraft, and drag-free controlflight. This validation is performed using highly sensitive drag-free sensors, which are provided by the LISA Technology Package of the European Space Agency. The Disturbance Reduction System is required to maintain the spacecrafts position with respect to a free-floating test mass to better than 10nm/(square root of Hz), along its sensitive axis (axis in optical metrology). It also has a goal of limiting the residual accelerations of any of the two test masses to below 30 x 10(exp -14) (1 + ([f/3 mHz](exp 2))) m/sq s/(square root of Hz), over the frequency range of 1 to 30 mHz.This paper briefly describes the design and the expected on-orbit performance of the control system for the two modes wherein the drag-free performance requirements are verified. The on-orbit performance of these modes are then compared to the requirements, as well as to the expected performance, and discussed.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN41406 , International ESA Conference on Guidance, Navigation & Control Systems; May 29, 2017 - Jun 02, 2017; Salzburg; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...