ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-08-05
    Description: Reversion of agricultural land to heathland and acid grassland is a priority for the conservation of these rare habitats. Restoration processes require interventions to reverse the effects of fertilization and acidity amelioration undertaken during decades of agricultural production. Belowground assessments of restoration success are few, and we have examined the utility of soil indices as a rationalized tool for land managers and restoration practitioners to assess the efficacy of restoration practice. To achieve this, we assessed a large number of variables, many of which might be near redundant, that could be optimized for such indices. We used a 14-year field experiment contrasting acidified pasture (treated with elemental sulphur), control (untreated) pasture, and adjacent native heathland and acid grassland sites. Based on biotic and abiotic parameters, several ‘heathland restoration indices’ (resembling soil quality indices) were generated using a minimum dataset identified through principal component analysis and a linear scoring system. For comparison we also conducted alternative analyses of all parameters, using nonmetric multidimensional scaling plots and analyses of similarity (ANOSIM). Use of heathland restoration indices showed that elemental sulphur application had changed the soil chemical conditions, along with the vegetation assemblage, to be comparable to that of native acid grassland, but not the belowground biology. ANOSIM on full datasets confirmed this finding. An index based on key variables, rather than an analysis of all biotic and abiotic parameters, can be valuable to land managers and stakeholders in acid grassland and heathland restoration.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-25
    Description: Gardening has the potential to influence several ecosystem services, including soil carbon dynamics, and shape progression towards the UN Sustainable Development Goals, (e.g., SDG 13). There are very few citizen/community science projects that have been set up to test an explicit hypothesis. However, citizen/community science allows collection of countrywide observations on ecosystem services in domestic gardens to inform us on the effects of gardening on SDGs. The geographical spread of samples that can be collected by citizen/community science would not be possible with a team of professional science researchers alone. Members of the general public across the UK submitted soil samples and buried standardised litter bags (tea bags) as part of the Tea Bag Index—UK citizen/community science project. Participants returned 511 samples from across the UK from areas in their garden where soil organic amendments were and were not applied. The project examined the effects of application of soil amendments on decomposition rates and stabilisation of litter, and in turn, effects on soil carbon and nitrogen concentrations. This was in response to a call for contributions to a global map of decomposition in the Teatime4Science campaign. Results suggested that application of amendments significantly increased decomposition rate and soil carbon, nitrogen, and carbon: nitrogen ratios within each garden. So much so that amendment application had more influence than geographic location. Furthermore, there were no significant interactions between location and amendment application. We therefore conclude that management in gardens has similar effects on soil carbon and decomposition, regardless of the location of the garden in question. Stabilisation factor was influenced more prominently by location than amendment application. Gardening management decisions can influence a number of SDGs and a citizen/community science project can aid in both the monitoring of SDGs, and involvement of the public in delivery of SDGs.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2021-02-21
    Description: Purpose To build a more holistic understanding of soil pH change we assessed the synchronised effects of a contrived soil pH change on soil chemistry, vegetation growth and nutrition, and soil faunal abundance and diversity. Methods We established a fifteen year old field experiment with a contrived pH gradient (pH 4.3 to 6.3) and measured the effect on soil chemistry, plant biomass and elemental composition and the impact of these changes on soil fauna (earthworms, nematodes, rotifers and tardigrades) and biological indices (based on ecological group structures of earthworms and nematodes). A single 20 × 20 × 20 cm soil block was excavated from each sample site to directly attribute biotic parameters in the block to the abiotic (soil) conditions. Results Acidification affected the extractable concentrations of Al, Ca, Mn and P and the C:N ratio of the soil and caused a reduction in plant Ca (rs for pH vs Ca = 0.804 p 
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-06-12
    Description: A decline in soil biodiversity is generally considered to be the reduction of forms of life living in soils, both in terms of quantity and variety. Where soil biodiversity decline occurs, it can significantly affect the soils’ ability to function, respond to perturbations and recover from a disturbance. Several soil threats have been identified as having negative effects on soil biodiversity, including human intensive exploitation, land-use change and soil organic matter decline. In this review we consider what we mean by soil biodiversity, and why it is important to monitor. After a thorough review of the literature identified on a Web of Science search concerning threats to soil biodiversity (topic search: threat* “soil biodiversity”), we compiled a table of biodiversity threats considered in each paper including climate change, land use change, intensive human exploitation, decline in soil health or plastic; followed by detailed listings of threats studied. This we compared to a previously published expert assessment of threats to soil biodiversity. In addition, we identified emerging threats, particularly microplastics, in the 10 years following these knowledge based rankings. We found that many soil biodiversity studies do not focus on biodiversity sensu stricto, rather these studies examined either changes in abundance and/or diversity of individual groups of soil biota, instead of soil biodiversity as a whole, encompassing all levels of the soil food web. This highlights the complexity of soil biodiversity which is often impractical to assess in all but the largest studies. Published global scientific activity was only partially related to the threats identified by the expert panel assessment. The number of threats and the priority given to the threats (by number of publications) were quite different, indicating a disparity between research actions versus perceived threats. The lack of research effort in key areas of high priority in the threats to soil biodiversity are a concerning finding and requires some consideration and debate in the research community.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-01-03
    Description: Decomposition is a key flux of terrestrial carbon to the atmosphere. Therefore, gaining a better understanding of how plant litter decomposes in soil, and what governs this process, is vital for global climate models. The Tea Bag Index (TBI) was introduced by Keuskamp et al. (2013) as a novel method for measuring litter decomposition rate and stabilisation. The TBI uses two types of tea bags representing fast (green tea) and slow (rooibos tea) decomposition substrates as standardised litter bags. To date, the TBI method has been used in over 2000 locations across the globe. However, before now, there has been no information on how the composition of the tea leaves change during incubation. These data are crucial in determining the validity of the use of the TBI method globally, to ensure the tea leaves decompose in a way that is representative of so-called “native” litters. To provide chemical underpinning of the TBI method, a laboratory incubation of the tea bags was conducted with destructive sampling at 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, and 91 d. The incubated tea was analysed for total C and N. In addition, C was characterised as alkyl, O-alkyl, aromatic, or carbonyl C using solid-state 13C nuclear magnetic resonance spectroscopy with cross-polarization and magic angle spinning (CPMAS NMR). The results suggest that changes in carbon in both tea types are comparable to other litter studies, with a net decrease in total C and relative proportion of O-alkyl C fraction, which contains carbohydrates and cellulose. We conclude that the decomposition of tea leaves in the bags used in the TBI is representative of other litters.
    Print ISSN: 1687-7667
    Electronic ISSN: 1687-7675
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-11-11
    Description: Selecting a suitable physical fractionation method, to investigate soil organic matter dynamics, from the plethora that are available is a difficult task. Using five different physical fractionation methods, on soils either nontreated or with a history of amendment with a range of exogenous organic matter inputs (Irish moss peat; composted horse manure; garden compost) and a resulting range of carbon contents (6.8 to 22.2%), we show that method selection had a significant impact on both the total C recovered and the distribution of the recovered C between unprotected, physically protected, or chemically protected conceptual pools. These between-method differences most likely resulted from the following: (i) variation in the methodological fractions obtained (i.e., distinguishing between aggregate size classes); (ii) their subsequent designation to conceptual pools (e.g., protected versus unprotected); and (iii) the procedures used in sample pretreatment and subsequent aggregate dispersion and fractionation steps. The performance of each method also varied depending on the amendment in question. The findings emphasise the need for an understanding of the nature of the soil samples under investigation, and the stabilisation mechanism of interest, both prior to method selection and when comparing and interpreting findings from literature studies using different fractionation methods.
    Print ISSN: 1687-7667
    Electronic ISSN: 1687-7675
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...