ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: Aerosols from the Sarychev Peak volcano entered the Arctic region less than a week after the strongest SO2 eruption on June 15 and 16, 2009 and had, by the second week in July, spread out over the entire Arctic region. These predominantly stratospheric aerosols were determined to be sub-micron in size and inferred to be composed of sulphates produced from the condensation of SO2 gases emitted during the eruption. Average (500 nm) Sarychev-induced stratospheric optical depths over the Polar Environmental Atmospheric Research Laboratory (PEARL) at Eureka, Nunavut, Canada were found to be between 0.03 and 0.05 during the months of July and August, 2009. This estimate, derived from sunphotometry and integrated lidar backscatter profiles was consistent with averages derived from lidar estimates over Ny-Ålesund (Spitsbergen). The Sarychev SOD e-folding time at Eureka, deduced from lidar profiles, was found to be approximately 4 months relative to a regression start date of July 27. These profiles initially revealed the presence of multiple Sarychev plumes between the tropopause and about 17 km altitude. After about two months, the complex vertical plume structures had collapsed into fewer, more homogeneous plumes located near the tropopause. It was found that the noisy character of daytime backscatter returns induced an artifactual minimum in the temporal, pan-Arctic, CALIOP SOD response to Sarychev sulphates. A depolarization ratio discrimination criterion was used to separate the CALIOP stratospheric layer class into a low depolarization subclass which was more representative of Sarychev sulphates. Post-SAT (post Sarychev Arrival Time) retrievals of the fine mode effective radius (reff,f) and the logarithmic standard deviation for two Eureka sites and Thule, Greenland were all close to 0.25 μm and 1.6 respectively. The stratospheric analogue to the columnar reff,f average was estimated to be reff,f(+) = 0.29 μm for Eureka data. Stratospheric, Raman lidar retrievals at Ny-Ålesund, yielded a post-SAT average of reff,f(+) = 0.27 μm. These results are ~ 50% larger than the background stratospheric-aerosol value. They are also about a factor of two larger than modeling values used in recent publications or about a factor of five larger in terms of (per particle) backscatter cross section.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Atmospheric Measurement Techniques Dicussions, COPERNICUS GESELLSCHAFT MBH, 8, pp. 2013-2015, ISSN: 1867-1381
    Publication Date: 2015-03-04
    Description: We present recent progress related to the night-time retrievals of aerosol and cloud optical depth using starphotometry over the PEARL (Polar Environmental Atmospheric Research Laboratory) station at Eureka (Nunavut, Canada) in the High Arctic (80° N, 86° W). In the spring of 2011 and 2012, the SPSTAR starphotometer was employed to acquire aerosol optical depth (AOD) measurements while vertical aerosol and cloud backscatter coefficient profiles were acquired using the CANDAC Raman Lidar (CRL). Several events were detected and characterized using starphotometry-lidar synergy: aerosols (short term aerosol events on 9 and 10 March 2011); a potential multi-night aerosol event across three polar nights (13–15 March 2012), a thin cloud event (21 February 2011) and a very low altitude ice crystals (10 March 2011). Using a simple backscatter coefficient threshold criterion we calculated fine and coarse (sub and super-micron) mode AODs from the vertically integrated CRL profiles. These were compared with their starphotometry analogues produced from a spectral deconvolution algorithm. The process-level analysis showed, in general, good agreement in terms of the physical coherence between high frequency starphotometry and lidar data. We argue that R2 (coefficient of determination) is the most robust means of comparing lidar and starphotometer data since it is sensitive to significant optico-physical variations associated with these two independent data sources while being minimally dependent on retrieval and calibration artifacts. Differences between the fine and course mode components of the starphotometry and lidar data is clearly also useful but is more dependent on such artifacts. Studying climatological seasonal aerosol trends necessitates effective cloud-screening procedures: temporal and spectral cloud screening of starphotometry data was found to agree moderately well with temporal cloud screening results except in the presence of thin homogeneous cloud. We conclude that better screening conditions can be implemented to arrive at a robust method for combined temporal/spectral cloud-screening of starphotometer (and possibly sunphotometer) data. In general, as our understanding of process-level details increases with growing datasets, we will inevitably have more confidence in bulk climatological analyses of ground-based and satellite retrievals of aerosol parameters where conditions are less than ideal because of the weakness of the polar winter aerosol signal.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMER GEOPHYSICAL UNION
    In:  EPIC3Journal of Geophysical Research-Atmospheres, AMER GEOPHYSICAL UNION, 117(D4), ISSN: 0148-0227
    Publication Date: 2019-07-17
    Description: Aerosols from the Sarychev Peak volcano entered the Arctic region less than a week after the strongest SO2eruption on June 15 and 16, 2009 and had, by the first week in July, spread out over the entire Arctic region. These predominantly stratospheric aerosols were determined to be sub-micron in size and inferred to be composed of sulphates produced from the condensation of SO2gases emitted during the eruption. Average (500 nm) Sarychev-induced stratospheric optical depths (SOD) over the Polar Environmental Atmospheric Research Laboratory (PEARL) at Eureka (Nunavut, Canada) were found to be between 0.03 and 0.05 during the months of July and August, 2009. This estimate, derived from sunphotometry and integrated lidar backscatter profiles was consistent with averages derived from lidar estimates over Ny-Ålesund (Spitsbergen). The Sarychev SOD e-folding time at Eureka, deduced from lidar profiles, was found to be approximately 4 months relative to a regression start date of July 27. These profiles initially revealed the presence of multiple Sarychev plumes between the tropopause and about 17 km altitude. After about two months, the complex vertical plume structures had collapsed into fewer, more homogeneous plumes located near the tropopause. It was found that the noisy character of daytime backscatter returns induced an artifactual minimum in the temporal, pan-Arctic, CALIOP SOD response to Sarychev sulphates. A depolarization ratio discrimination criterion was used to separate the CALIOP stratospheric layer class into a low depolarization subclass which was more representative of Sarychev sulphates. Post-SAT (post Sarychev Arrival Time) retrievals of the fine mode effective radius (reff,f) and the logarithmic standard deviation for two Eureka sites and Thule (Greenland) were all close to 0.25 μm and 1.6 respectively. The stratospheric analogue to the columnar reff,f average was estimated to be reff,f(+) = 0.29 μm for Eureka data. Stratospheric, Raman lidar retrievals at Ny-Ålesund, yielded a post-SAT average of reff,f(+) = 0.27 μm. These results are ∼50% larger than the background stratospheric-aerosol value. They are also about a factor of two larger than modeling values used in recent publications or about a factor of five larger in terms of (per particle) backscatter cross section.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-06-01
    Print ISSN: 0705-5900
    Electronic ISSN: 1480-9214
    Topics: Geosciences , Physics
    Published by Taylor & Francis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2008-09-29
    Description: Ice crystals, also known as diamond dust, are suspended in the boundary layer air under clear sky conditions during most of the Arctic winter in Northern Canada. Occasionally ice crystal events can produce significantly thick layers with optical depths in excess of 2.0 even in the absence of liquid water clouds. Four case studies of high optical depth ice crystal events at Eureka in the Nunavut Territory of Canada during the winter of 2006–2007 are presented. They show that the measured ice crystal surface infrared downward radiative forcing ranged from 8 to 36 W m−2 in the wavelength band from 5.6 to 20 μm for visible optical depths ranging from 0.2 to 1.7. MODIS infrared and visible images and the operational radiosonde wind profile were used to show that these high optical depth events were caused by surface snow being blown off 600 to 800 m high mountain ridges about 20 to 30 km North-West of Eureka and advected by the winds towards Eureka as they settled towards the ground within the highly stable boundary layer. This work presents the first study that demonstrates the important role that surrounding topography plays in determining the occurrence of high optical depth ice crystal events and points to a new source of boundary layer ice crystal events distinct from the classical diamond dust phenomenon.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-03-16
    Description: Ice crystals, also known as diamond dust, are suspended in the boundary layer air under clear sky conditions during most of the Arctic winter in Northern Canada. Occasionally ice crystal events can produce significantly thick layers with optical depths in excess of 2.0 even in the absence of liquid water clouds. Four case studies of high optical depth ice crystal events at Eureka in the Nunavut Territory of Canada during the winter of 2006/07 are presented. They show that the measured ice crystal surface infrared downward radiative forcing ranged from 8 to 36 W m−2 in the wavelength band from 5.6 to 20 μm for 532 nm optical depths ranging from 0.2 to 1.7. MODIS infrared and visible images and the operational radiosonde wind profile were used to show that these high optical depth events were caused by surface snow being blown off 600 to 800 m high mountain ridges about 20 to 30 km North-West of Eureka and advected by the winds towards Eureka as they settled towards the ground within the highly stable boundary layer. This work presents the first study that demonstrates the important role that surrounding topography plays in determining the occurrence of high optical depth ice crystal events from residual blowing snow that becomes a source of boundary layer ice crystals distinct from the classical diamond dust phenomenon.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-04-27
    Description: As a consequence of dynamically variable meteorological conditions, springtime Arctic ozone levels exhibit significant interannual variability in the lower stratosphere. In winter 2011, the polar vortex was strong and cold for an unusually long time. Our research site, located at Eureka, Nunavut, Canada (80.05° N, 86.42° W), was mostly inside the vortex from October 2010 until late March 2011. The Bruker 125HR Fourier transform infrared spectrometer installed at the Polar Environment Atmospheric Research Laboratory at Eureka acquired measurements from 23 February to 6 April during the 2011 Canadian Arctic Atmospheric Chemistry Experiment Validation Campaign. These measurements showed unusually low ozone, HCl, and HNO3 total columns compared to the previous 14 yr. To remove dynamical effects, we normalized these total columns by the HF total column. The normalized values of the ozone, HCl, and HNO3 total columns were smaller than those from previous years, and confirmed the occurrence of chlorine activation and chemical ozone depletion. To quantify the chemical ozone loss, a three-dimensional chemical transport model, SLIMCAT, and the passive subtraction method were used. The chemical ozone depletion was calculated as the mean percentage difference between the measured ozone and the SLIMCAT passive ozone, and was found to be 35%.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-07-30
    Description: The source attribution of observed variability of total PM2.5 concentrations over Halifax, Nova Scotia, was investigated between 11 July and 26 August 2011 using measurements of PM2.5 mass and PM2.5 chemical composition (black carbon, organic matter, anions, cations and 33 elements). This was part of the BORTAS-B (quantifying the impact of BOReal forest fires on Tropospheric oxidants using Aircraft and Satellites) experiment, which investigated the atmospheric chemistry and transport of seasonal boreal wildfire emissions over eastern Canada in 2011. The US EPA Positive Matrix Factorization (PMF) receptor model was used to determine the average mass (percentage) source contribution over the 45 days, which was estimated to be as follows: long-range transport (LRT) pollution: 1.75 μg m−3 (47%); LRT pollution marine mixture: 1.0 μg m−3 (27.9%); vehicles: 0.49 μg m−3 (13.2%); fugitive dust: 0.23 μg m−3 (6.3%); ship emissions: 0.13 μg m−3 (3.4%); and refinery: 0.081 μg m−3 (2.2%). The PMF model describes 87% of the observed variability in total PM2.5 mass (bias = 0.17 and RSME = 1.5 μg m−3). The factor identifications are based on chemical markers, and they are supported by air mass back trajectory analysis and local wind direction. Biomass burning plumes, found by other surface and aircraft measurements, were not significant enough to be identified in this analysis. This paper presents the results of the PMF receptor modelling, providing valuable insight into the local and upwind sources impacting surface PM2.5 in Halifax and a vital comparative data set for the other collocated ground-based observations of atmospheric composition made during BORTAS-B.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...