ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0899-0042
    Keywords: NSAID ; chirality ; enantiomers ; protein binding ; equilibrium dialysis ; fluorescent specific markers ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The protein binding of etodolac enantiomers was studied in vitro by equilibrium dialysis in human serum albumin (HSA) of various concentrations varying from 1 to 40 g/liter, by addition of each enantiomer at increasing concentrations. In the 1 g/liter solution, at the lowest drug levels, the (R)-form is more bound than its antipode, the contrary being observed at the highest drug levels. For higher albumin concentrations, S was bound in a larger extent than R. Using the displacement of specific markers of HSA sites I and II, studied by spectrofluorimetry, it was suggested that R and S are both bound to site I, while only S is strongly bound to site II. © 1992 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Chirality 8 (1996), S. 271-280 
    ISSN: 0899-0042
    Keywords: non-steroidal anti-inflammatory drugs ; human serum albumin ; chirality ; chloride ; fatty acids ; equilibrium dialysis ; dansylamide ; dansylsarcosine ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Non-steroidal anti-inflammatory drugs (NSAIDs) are strongly bound to human serum albumin (HSA), mainly to sites I and II. The aim of this study was to characterize the binding site(s) of etodolac enantiomers under physiological conditions (580 μM HSA) using equilibrium dialysis. The protein binding of etodolac enantiomers, alone or in various ratios, was studied in order to evaluate the potential competition between them. Our results showed that (S)-etodolac was more strongly bound to HSA than (R)-etodolac. The displacement of one enantiomer by its antipode was observed only at high concentrations of the competitor, and was more pronounced for the (S)-form. Displacement studies of the enantiomers by specific probes of sites I and II of albumin, dansylamide, and dansylsarcosine, respectively, showed that (R)-etodolac was slightly displaced by both these probes whereas the free concentration of (S)-etodolac increased markedly in the presence of dansylsarcosine. Moreover, the binding of ligands to sites I and II is usually affected by alkaline pH, by chloride ions, and by fatty acids. For etodolac, the presence of 0.1 and 1 M chloride ions and increasing pH (5.5-9) decreased the binding of both enantiomers. The same result was obtained with addition of octanoic acid. Conversely, the addition of oleic, palmitic, or stearic acid to the protein solution increased the binding of (R)-etodolac, but decreased that of its antipode. All these findings suggest that (R)- and (S)-etodolac interact mainly with site II of HSA, and that the (R)-isomer is also bound to site I under physiological conditions. © 1996 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...