ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1994-07-01
    Print ISSN: 1073-5623
    Electronic ISSN: 1543-1940
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-05
    Description: A team consisting of GE Aircraft Engines, Precision Cast Parts, Oremet, and Chromalloy were awarded a NASA-sponsored Aerospace Industry Technology Program (AITP) to develop a design and manufacturing capability that will lead to the engine test demonstration and eventual implementation of a ?-Ti-47Al-2Nb-2Cr (at. %) titanium aluminide (TiAl) low-pressure turbine blade into commercial service. One of the main technical risks of implementing TiAl low-pressure turbine blades is the poor impact resistance of TiAl in comparison to the currently used nickel-based superalloy. The impact resistance of TiAl is being investigated at the NASA Lewis Research Center as part of the Aerospace Industry Technology Program and the Advanced High Temperature Engine Materials Program (HITEMP). The overall objective of this work is to determine the influence of impact damage on the high cycle fatigue life of TiAl-simulated low-pressure turbine blades. To this end, impact specimens were cast to size in a dog-bone configuration and given a typical processing sequence followed by an exposure to 650 degrees Celsius for 20 hours to simulate embrittlement at service conditions. Then, the specimens were impacted at 260 degrees Celsius under a 69-MPa load. Steel projectiles with diameters 1.6 and 3.2 mm were used to impact the specimens at 90 degrees Celsius to the leading edge. Two different impact energies (0.74 and 1.5 joules) were used to simulate fairly severe domestic object damage on a low-pressure turbine blade.
    Keywords: Metals and Metallic Materials
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-02
    Description: Gamma titanium-aluminum alloy (g-TiAl) is an attractive new material for aerospace applications because of its low density and high specific strength in comparison to currently used titanium and nickel-base alloys. Potential applications for this material are compressor and low-pressure turbine blades. These blades are fitted into either the compressor or turbine disks via a dovetail connection. The dovetail region experiences a complex stress state due to the alternating centrifugal force and the natural high-frequency vibration of the blade. Because of the dovetail configuration and the complex stress state, fretting is often a problem in this area. Furthermore, the local stress state becomes more complex when the influence of the metal-metal contact and the edge of the contact is evaluated. Titanium and titanium-based alloys in the clean state exhibit strong adhesive bonds when in contact with themselves and other materials (refs. 1 and 2). This adhesion causes heavy surface damage and high friction in practical cases. Although the wear produced by fretting may be mild, the reduction in fatigue life can be substantial. Thus, there is the potential for fretting problems with these TiAl applications. Since TiAl is an emerging material, there has been limited information about its fretting behavior.
    Keywords: Metals and Metallic Materials
    Type: Research and Technology 2002; NASA/TM-2003-211990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: Two alloys with negative mismatch parameters, NASAIR 100 and a modified NASAIR 100 called Alloy 3 were run as turbine blades in an experimental ground based Garret TFE731 engine for up to 200 hr. The directional coarsening of gamma prime (rafting) that developed during engine testing was analyzed and compared to previous research from laboratory tests. The blades were found to be rafted normal to the centrifugal stress axis over much of the span, but near the surfaces, the blades were found to be rafted parallel to the centrifugal stress axis for certain cycles. Representative photomicrographs of the blades and the effects of stress and temperature on raft formation are shown.
    Keywords: METALLIC MATERIALS
    Type: NASA-TM-100105 , E-3642 , NAS 1.15:100105
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-10-02
    Description: Work at TECO has independently confirmed the early results obtained at JPL that high-temperature heat-treatment of SiGe/GaP alloys can significantly increase the figure of merit Z of these alloys. Several possible reasons for this improvement are given. Experiments are in progress to test these various hypothesis.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: New Mexico Univ., Transactions of the Fifth Symposium on Space Nuclear Power Systems; p 629-632
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-02
    Description: The Revolutionary Turbine Accelerator/Turbine-Based Combined Cycle (RTA/TBCC) Program for the next-generation launch vehicle has targeted gamma titanium aluminide as a potential compressor and structural material. Because of the high compressor inlet and exit temperatures, the TBCC engine requires higher temperature materials than conventional Ti alloys, and because of its stringent thrust-to-weight requirements, the engine requires low-density material to be utilized wherever possible. Third-generation gamma alloys offer higher temperature capability along with low density and high stiffness. A high-temperature, high-strength *-TiAl alloy with a high Nb-content (Gamma MET PX1) was selected for evaluation. The microstructure and mechanical properties of Gamma Met PX (GMPX) in both the as-extruded and a lamellar heat-treated condition and the influence of the microstructure on the tensile, creep, and fatigue properties were investigated in-house.
    Keywords: Metals and Metallic Materials
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-02
    Description: Next-generation launch vehicles are being designed with turbine-based combined cycle (TBCC) propulsion systems having very aggressive thrust/weight targets and long lives. Achievement of these goals requires advanced materials in a wide spectrum of components. TiAl has been identified as a potential backstructure material for maintainable composite panel heat exchangers (HEX) in the inlet, combustor, and nozzle section of a TBCC propulsion system. Weight reduction is the primary objective of this technology. Design tradeoff studies have assessed that a TiAl structure, utilizing a high-strength, hightemperature TiAl alloy called Gamma MET PX,1 reduce weight by 41 to 48 percent in comparison to the baseline Inconel 718 configuration for the TBCC propulsion system inlet, combustor, and nozzle. A collaborative effort between the NASA Glenn Research Center, Pratt & Whitney, Engineering Evaluation & Design, PLANSEE AG (Austria), and the Austrian Space Agency was undertaken to design, manufacture, and validate a Gamma-MET PX TiAl structure for scramjet applications. The TiAl inlet flap was designed with segmented flaps to improve manufacturability, to better control thermal distortion and thermal stresses, and to allow for maintainable HEX segments. The design philosophy was to avoid excessively complicated shapes, to minimize the number of stress concentrations, to keep the part sizes reasonable to match processing capabilities, and to avoid risky processes such as welding. The conceptual design used a standard HEX approach with a double-pass coolant concept for centrally located manifolds. The flowpath side was actively cooled, and an insulation package was placed on the external side to save weight. The inlet flap was analyzed structurally, and local high-stress regions were addressed with local reinforcements.
    Keywords: Aircraft Design, Testing and Performance
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-05
    Description: A subelement-level ultimate strength test was completed successfully at the NASA Glenn Research Center (http://www.nasa.gov/glenn/) on a large gamma titanium aluminide (TiAl) inlet flap demonstration piece. The test subjected the part to prototypical stress conditions by using unique fixtures that allowed both loading and support points to be located remote to the part itself (see the photograph). The resulting configuration produced shear, moment, and the consequent stress topology proportional to the design point. The test was conducted at room temperature, a harsh condition for the material because of reduced available ductility. Still, the peak experimental load-carrying capability exceeded original predictions.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-05
    Description: High-temperature shape-memory alloys (HTSMAs) based on nickel-titanium (NiTi) with significant ternary additions of palladium (Pd), platinum (Pt), gold (Au), or hafnium (Hf) have been identified as potential high-temperature actuator materials for use up to 500 C. These materials provide an enabling technology for the development of "smart structures" used to control the noise, emissions, or efficiency of gas turbine engines. The demand for these high-temperature versions of conventional shape-memory alloys also has been growing in the automotive, process control, and energy industries. However these materials, including the NiPtTi alloys being developed at the NASA Glenn Research Center, will never find widespread acceptance unless they can be readily processed into useable forms.
    Keywords: Metals and Metallic Materials
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-05
    Description: Material parameters govern many of the design decisions in any engineering task. When two materials are in contact and microscopically small, relative motions (either vibratory or creeping) occur, and fretting fatigue can result. Fretting fatigue is a material response influenced by the materials in contact as well as by such variables as loading and vibratory conditions. Fretting produces fresh, clean interacting surfaces and induces adhesion, galling, and wear in the contact zone. Time, money, and materials are unnecessarily wasted when galling and wear result in excessive fretting fatigue that leads to poorly performing, unreliable mechanical systems. Fretting fatigue is a complex problem of significant interest to aircraft engine manufacturers. It can occur in a variety of engine components. Numerous approaches, depending on the component and the operating conditions, have been taken to address the fretting problems. The components of interest in this investigation were the low-pressure turbine blades and disks. The blades in this case were titanium aluminide, Ti-48Al-2Cr- 2Nb, and the disk was a nickel-base superalloy, Inconel 718 (IN 718). A concern for these airfoils is the fretting in fitted interfaces at the dovetail where the blade and disk are connected. Careful design can reduce fretting in most cases, but not completely eliminate it, because the airfoils frequently have a skewed (angled) blade-disk dovetail attachment, which leads to a complex stress state. Furthermore, the local stress state becomes more complex when the influence of the metal-metal contact and the edge of contact are considered.
    Keywords: Mechanical Engineering
    Type: Research and Technology 2001; NASA/TM-2002-211333
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...