ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2015-10-01
    Description: Observations from a series of frontal and postfrontal storms during the Colorado Airborne Multiphase Cloud Study (CAMPS) are combined to show transitions in cloud dynamics and microphysical statistics over a mountain range. During 10 flights in 2010 and 2011, along-wind, across-ridge transects over the Colorado Park Range are performed to statistically characterize air motion and microphysical conditions and their variability. Composite transect statistics show median vertical winds to be mostly upward windward of the ridge axis, and that cloud water concentration (CWC) and ice-particle number concentration are greatest near the ridge. Mixed-phase clouds were found throughout the study area, but increase in frequency by 70% relative to other cloud types in the vicinity of the range. Compared to ice-only clouds, mixed-phase clouds are associated with greater near-ridge increases in CWC and preferentially occur in regions with greater vertical wind variability or updrafts. Strong leeside reductions in CWC, the abundance of mixed-phase clouds, and number concentration of ice particles reflect the dominance of precipitation and particle mass loss processes, rather than cloud growth processes, downwind from the topographic barrier. On days in which the air column stability does not support lee subsidence, this spatial configuration is markedly different, with both ice- and liquid-water-bearing clouds appearing near the ridgeline and extending downwind. A case study from 9 January 2011 highlights mixed-phase regions in trapped lee waves, and in a near-ridgetop layer with evidence of low-altitude ice particle growth.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-10-17
    Description: This study examines the occurrence and morphology of frozen drop aggregates in thunderstorm anvils from the US Midwest and describes the environmental conditions where they are found. In situ airborne data collected in anvils using several particle imaging and sizing probes and bulk total water instrumentation during the 2012 Deep Convective Clouds and Chemistry Experiment are examined for the presence of frozen drop aggregates. These types of particles, especially chains of frozen drops, have been only rarely reported before and are hypothesized to aggregate due to electrical forces in the clouds. They were identified in nine of the anvil cases examined to-date, suggesting that they are common features in Midwestern anvils. High concentrations of individual frozen droplets occurred on the tops and edges of one particular set of anvils, while regions closer to the center and bottom of the anvils exhibited fewer frozen drops and more frozen drop aggregates. Bulk ice water content measurements across these anvils could only be explained by contributions from both small particles (frozen droplets) and large particles (large aggregates of frozen droplets). Dual Doppler radar analysis confirmed the presence of deep and strong (〉 15 m s−1) updrafts in the parent cloud of one of the anvils. These features contrast with previous anvil measurements in tropical/maritime anvils that evidently do not exhibit the same frequency of frozen drop aggregates.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-01-27
    Description: The second-generation University of Colorado closed-path tunable-diode laser hygrometer (CLH-2) is an instrument for the airborne in situ measurement of total water content – the sum of vapor-, liquid- and ice-phase water – in clouds. This compact instrument has been flown on the NSF/NCAR Gulfstream-V aircraft in an underwing canister. It operates autonomously and uses fiber-coupled optics to eliminate the need for a supply of dry compressed gas. In operation, sample air is ingested into a forward-facing sub-isokinetic inlet; this sampling configuration results in particle concentrations that are enhanced relative to ambient and causes greater instrument sensitivity to condensed water particles. Heaters within the inlet vaporize the ingested water particles, and the resulting augmented water vapor mixing ratio is measured by absorption of near-infrared light in a single-pass optical cell. The condensed water content is then determined by subtracting the ambient water vapor content from the total and by accounting for the inertial enhancement of particles into the sampling inlet. The CLH-2 is calibrated in the laboratory over a range of pressures and water vapor mixing ratios; the uncertainty in CLH-2 condensed water retrievals is estimated to be 14.3% to 16.1% (1-σ). A vapor-only laboratory intercomparison with the first-generation University of Colorado closed-path tunable-diode laser hygrometer (CLH) shows agreement within the 2-σ uncertainty bounds of both instruments.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-02-20
    Description: This study examines the occurrence and morphology of frozen-drop aggregates in thunderstorm anvils from the United States Midwest and describes the environmental conditions where they are found. In situ airborne data collected in anvils using several particle imaging and sizing probes and bulk total water instrumentation during the 2012 Deep Convective Clouds and Chemistry experiment are examined for the presence of frozen-drop aggregates. Chains of frozen drops have been only rarely reported before and are hypothesized to aggregate due to electrical forces in the clouds. They were identified in nine of the anvil cases examined to date, suggesting that they are common features in these Midwestern anvils. High concentrations of individual frozen droplets occurred on the tops and edges of one particular set of anvils, while regions closer to the center and bottom of these anvils exhibited fewer frozen drops and more frozen-drop aggregates. Bulk ice water content measurements across these anvils could only be explained by contributions from both small particles (frozen droplets) and large particles (large aggregates of frozen droplets). Dual Doppler radar analysis confirmed the presence of deep and strong (〉 15 m s−1) updrafts in the parent cloud of one of the anvils. These features contrast with previous anvil measurements in tropical/maritime anvils that evidently do not exhibit the same frequency of frozen-drop aggregates.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-12
    Description: The second-generation University of Colorado closed-path tunable-diode laser hygrometer (CLH-2) is an instrument for the airborne in situ measurement of total water content – the sum of vapor-, liquid- and ice-phase water – in clouds. This compact instrument has been flown on the NSF/NCAR Gulfstream-V aircraft in an underwing canister. It operates autonomously and uses fiber-coupled optics to eliminate the need for a supply of dry compressed gas. In operation, sample air is ingested into a forward-facing sub-isokinetic inlet; this sampling configuration results in particle concentrations that are enhanced relative to ambient and conveys greater instrument sensitivity to condensed water particles. Heaters within the inlet vaporize the ingested water particles, and the resulting augmented water vapor mixing ratio is measured by absorption of near-infrared light in a single-pass optical cell. The condensed water content is then determined by subtracting the ambient water vapor concentration from the total and by accounting for the inertial enhancement of particles into the sampling inlet. The CLH-2 is calibrated in the laboratory over a range of pressures and water vapor mixing ratios; the uncertainty in CLH-2 condensed water retrievals is estimated to be 14.3% to 16.1% (1-σ). A vapor-only laboratory intercomparison with the first-generation University of Colorado closed-path tunable-diode laser hygrometer (CLH) shows agreement within the 2-σ uncertainty bounds of both instruments.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...