ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 204 (1994), S. 70-74 
    ISSN: 1432-041X
    Keywords: Molluscan development ; Cell cycle arrest ; Transformation ; Positional specification ; Proliferation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract All-trans retinoic acid is well known as a modulator of positional specification in vertebrate development. A similar mechanism may operate in molluscan development. Molluscan development is characterized by an invariant pattern of cell divisions, which allows the study of individual cells in the developing organism. Low concentrations of exogenous retinoic acid applied during gastrulation affect the cell division pattern in the early larval stage of the molluscLymnaea stagnalis. A few cells from the apical plate, a larval organ consisting of seven large cleavage-arrested cells, were induced by retinoic acid to resume cell division. They typically formed an area of proliferating small cells that resembles the adjacent areas of precursor cells of adult ectoderm. The identification of individual cells that are transformed by retinoic acid may provide new insights into the mechanisms underlying positional specification within the embryo.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 204 (1994), S. 70-74 
    ISSN: 1432-041X
    Keywords: Molluscan development ; Cell cycle arrest ; Transformation ; Positional specification ; Proliferation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract All-trans retinoic acid is well known as a modulator of positional specification in vertebrate development. A similar mechanism may operate in molluscan development. Molluscan development is characterized by an invariant pattern of cell divisions, which allows the study of individual cells in the developing organism. Low concentrations of exogenous retinoic acid applied during gastrulation affect the cell division pattern in the early larval stage of the mollusc Lymnaea stagnalis. A few cells from the apical plate, a larval organ consisting of seven large cleavage-arrested cells, were induced by retinoic acid to resume cell division. They typically formed an area of proliferating small cells that resembles the adjacent areas of precursor cells of adult ectoderm. The identification of individual cells that are transformed by retinoic acid may provide new insights into the mechanisms underlying positional specification within the embryo.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-041X
    Keywords: Ionic currents ; Ca2+/Mg2+ ATPase ; Molluscan eggs ; Cell cycle ; Calcium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary During the first four mitotic division cycles of Lymnaea stagnalis embryos, we have detected cell cycle-dependent changes in the pattern of transcellular ionic currents and membrane-bound Ca2+-stimulated ATPase activity. Ionic currents ranging from 0.05 to 2.50 μA/cm2 have been measured using the vibrating probe technique. Enzyme activity was detected using Ando's cytochemical method (Ando et al. 1981) which reveals Ca2+/Mg2+ ATPase localization at the ultrastructural level, and under high-stringency conditions with respect to calcium availability, it reveals Ca2+-stimulated ATPase. The ionic currents and Ca2+-stimulated ATPase localization have in common that important changes occur during the M-phase of the cell cycles. Minimal outward current at the vegetal pole coincides with metaphase/anaphase. Maximal inward current at the animal pole coincides with the onset of cytokinesis at that pole. Ca2+-stimulated ATPase is absent from one half of the embryo at metaphase/anaphase of the two- and four-cell stage, whereas it is present in all cells during the remaining part of the cell cycle. Since fluctuations of cytosolic free calcium concentrations appear to correlate with both karyokinesis and cytokinesis, we speculate that part of the cyclic pattern of Ca2+-stimulated ATPase localization and of the transcellular ionic currents reflects the elevation of cytosolic free calcium concentration during the M-phase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-041X
    Keywords: Ionic currents ; Ca2−/Mg+ ATPase ; Molluscan embryo ; Mesoderm induction ; Calcium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary InLymnaea stagnalis, mesoderm induction occurs at the 24-cell stage, when the apical tip of the macromere 3D establishes a close contact with a number of micromeres. Via its tip, the macromere 3D is supposed to receive an inductive signal from the micromeres, resulting in the determination of the mesodermal stem cell 4d at the next division. In view of the possibility that transcellular ionic currents might somehow be involved, either in the processes that bring about this particular configuration of blastomeres or in the induction process itself, we mapped the electric field around the embryo during the 24-cell stage, using a vibrating probe. We detected a reversal of the current direction as compared to the uncleaved egg, whilst the polarity of the field along the animal-vegetal axis was maintained. We also mapped the localization of Ca2+-stimulated AT-Pase, an enzyme that drives the Ca2+-efflux from the cell. We found that this enzyme is localized exclusively along the cytoplasmic face of the apical plasma membrane of macromere 3D, and that its presence is restricted to the period from 110 to 135 min after the fifth cleavage, when there is close contact between macormere 3D and the micromeres. Since the localization of the Ca2+-stimulated ATPase coincides both in time and space with the induction of the mesoderm-mother cell, we suggest that localized calcium fluxes may play a role in this induction process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...