ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2011-04-01
    Description: The Global Space-based Inter-Calibration System (GSICS) is a new international program to assure the comparability of satellite measurements taken at different times and locations by different instruments operated by different satellite agencies. Sponsored by the World Meteorological Organization and the Coordination Group for Meteorological Satellites, GSICS will intercalibrate the instruments of the international constellation of operational low-earth-orbiting (LEO) and geostationary earth-orbiting (GEO) environmental satellites and tie these to common reference standards. The intercomparability of the observations will result in more accurate measurements for assimilation in numerical weather prediction models, construction of more reliable climate data records, and progress toward achieving the societal goals of the Global Earth Observation System of Systems. GSICS includes globally coordinated activities for prelaunch instrument characterization, onboard routine calibration, sensor intercomparison of near-simultaneous observations of individual scenes or overlapping time series, vicarious calibration using Earth-based or celestial references, and field campaigns. An initial strategy uses high-accuracy satellite instruments, such as the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)'s Centre National d'Études Spatiales (CNES) Infrared Atmospheric Sounding Interferometer (IASI), as space-based reference standards for intercalibrating the operational satellite sensors. Examples of initial intercalibration results and future plans are presented. Agencies participating in the program include the Centre National d'Études Spatiales, China Meteorological Administration, EUMETSAT, Japan Meteorological Agency, Korea Meteorological Administration, NASA, National Institute of Standards and Technology, and NOAA.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-04-01
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-10-01
    Description: The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5–50 μm), the spectrum of solar radiation reflected by the Earth and its atmosphere (320–2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a “NIST [National Institute of Standards and Technology] in orbit.” CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2001-02-15
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1999-08-31
    Description: A parametric study of the instantaneous radiative impact of contrails is presented using three different radiative transfer models for a series of model atmospheres and cloud parameters. Contrails are treated as geometrically and optically thin plane parallel homogeneous cirrus layers in a static atmosphere. The ice water content is varied as a function of ambient temperature. The model atmospheres include tropical, mid-latitude, and subarctic summer and winter atmospheres. Optically thin contrails cause a positive net forcing at top of the atmosphere. At the surface the radiative forcing is negative during daytime. The forcing increases with the optical depth and the amount of contrail cover. At the top of the atmosphere, a mean contrail cover of 0.1% with average optical depth of 0.2 to 0.5 causes about 0.01 to 0.03 Wm-2 daily mean instantaneous radiative forcing. Contrails cool the surface during the day and heat the surface during the night, and hence reduce the daily temperature amplitude. The net effect depends strongly on the daily variation of contrail cloud cover. The indirect radiative forcing due to particle changes in natural cirrus clouds may be of the same magnitude as the direct one due to additional cover.Key words. Atmospheric composition and structure (aerosols and particles) · Meteorology and atmospheric dynamics (climatology · radiative processes)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: Radiative flux anomalies derived from the NASA spaceborne Earth Radiation Budget Experiment were used to determine the volcanic radiative forcing that followed the eruption of Mount Pinatubo in June 1991. They are the first unambiguous, direct measurements of large-scale volcanic forcing. The volcanic aerosols caused a strong cooling effect immediately; the amount of cooling increased through September 1991 as shortwave forcing increased relative to the longwave forcing. The primary effects of the aerosols were a direct increase in albedo over mostly clear areas and both direct and indirect increases in the albedo of cloudy areas.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Science (ISSN 0036-8075); 259; 5100; p. 1411-1415.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-23
    Description: A parametric study of the instantaneous radiative impact of contrails is presented using three different radiative transfer models for a series of model atmospheres and cloud parameters. Contrails are treated as geometrically and optically thin plane parallel homogeneous cirrus layers in a static atmospheres The ice water content is varied as a function of ambient temperature. The model atmospheres include tropical, mid-latitude, and subarctic summer and winter atmospheres Optically thin contrails cause a positive net forcing at top of the atmosphere. At the surface the radiative forcing is negative during daytime. The forcing increases with the optical depth and the amount of contrail cover. At the top of the atmosphere a mean contrail cover of 0.1% with average optical depth of 0.2 to 0.5 causes about 0.01 to 0.03 W/m(exp 2)a daily mean instantaneous radiative forcing. Contrails cool the surface during the day and heat the surface during the night, and hence reduce the daily temperature amplitude The net effect depends strongly on the daily variation of contrail cloud cover. The indirect radiative forcing due to particle changes in natural cirrus clouds may be of the same magnitude as the direct one due to additional cover.
    Keywords: Meteorology and Climatology
    Type: Annales Geophysicae; Volume 17; 1080-1094
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: In this study, hourly RUC analyses were used to examine the differences between RH and temperature values from RUC reanalysis data and from radiosonde atmospheric profiles obtained at the ARM SCF. The results show that the temperature observations from the SONDE and RUC are highly correlated. The RHs are also well-correlated, but the SONDE values generally exceed those from RUC. Inside cloud layers, the RH from RUC is 2-14% lower than the RH from SONDE for all RUC layers. Although the layer mean RH within clouds is much greater than the layer mean RH outside cloud or in the clear-sky, RH thresholds chosen as a function of temperature can more accurately diagnose cloud occurrence for either dataset. For overcast clouds, it was found that the 50% probability RH threshold for diagnosing a cloud, within a given upper tropospheric layer is roughly 90% for the Vaisala RS80-15LH radisonde and 80% for RUC data. While for the partial cloud (cloud amount is less than 90%), the RH thresholds of SONDE are close to RUC for a given probability in upper tropospheric layers. The probabilities of detecting clouds at a given RH and temperature should be useful for a variety of application such as the development of new cloud parameterizations or for estimating the vertical profile of cloudiness underneath a given cloud observed from the satellite to construct a 3-D cloud data set for computing atmospheric radiative heating profiles or determining potential aircraft icing conditions.
    Keywords: Meteorology and Climatology
    Type: 13th AMS Conference on Satellite Oceanography and Meteorology; Sep 20, 2004 - Sep 24, 2004; Norfolk, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The Clouds and Earth Radiant Energy System (CERES) project s objectives are to measure the reflected solar radiance (shortwave) and Earth-emitted (longwave) radiances and from these measurements to compute the shortwave and longwave radiation fluxes at the top of the atmosphere (TOA) and the surface and radiation divergence within the atmosphere. The fluxes at TOA are to be retrieved to an accuracy of 2%. Improved bidirectional reflectance distribution functions (BRDFs) have been developed to compute the fluxes at TOA from the measured radiances with errors reduced from ERBE by a factor of two or more. Instruments aboard the Terra and Aqua spacecraft provide sampling at four local times. In order to further reduce temporal sampling errors, data are used from the geostationary meteorological satellites to account for changes of scenes between observations by the CERES radiometers. A validation protocol including in-flight calibrations and comparisons of measurements has reduced the instrument errors to less than 1%. The data are processed through three editions. The first edition provides a timely flow of data to investigators and the third edition provides data products as accurate as possible with resources available. A suite of cloud properties retrieved from the MODerate-resolution Imaging Spectroradiometer (MODIS) by the CERES team is used to identify the cloud properties for each pixel in order to select the BRDF for each pixel so as to compute radiation fluxes from radiances. Also, the cloud information is used to compute radiation at the surface and through the atmosphere and to facilitate study of the relationship between clouds and the radiation budget. The data products from CERES include, in addition to the reflected solar radiation and Earth emitted radiation fluxes at TOA, the upward and downward shortwave and longwave radiation fluxes at the surface and at various levels in the atmosphere. Also at the surface the photosynthetically active radiation and ultraviolet radiation (total, UVA and UVB) are computed. The CERES instruments aboard the Terra and Aqua spacecraft have served well past their design life times. A CERES instrument has been integrated onto the NPP platform and is ready for launch in 2011. Another CERES instrument is being built for launch in 2014, and plans are being made for a series of follow-on missions.
    Keywords: Meteorology and Climatology
    Type: NF1676L-12914 , Advances in Space Research (ISSN 0273-1177); 48; 2; 254-263
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...