ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 5 (1994), S. 129-141 
    ISSN: 1572-9729
    Keywords: dichloromethane ; Hyphomicrobium ; inhibition ; NaCl ; trickling filter ; wastegas treatment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The degradation of dichloromethane by the pure strainHyphomicrobium GJ21 and by an enrichment culture, isolated from a continuously operating biological trickling filter system, as well as the corresponding growth rates of these organisms were investigated in several batch experiments. By fitting the experimental data to generally accepted theoretical expressions for microbial growth, the maximum growth rates were determined. The effect of NaCl was investigated at salt concentrations varying from 0 to 1000 mM. Furthermore the dichloromethane degradation was investigated separately in experiments in which a high initial biomass concentration was applied. The results show that microbial growth is strongly inhibited by increased NaCl concentrations (50% reduction of μmax at 200–250 mM NaCl), while a certain degree of adaptation has taken place within an operational system eliminating dichloromethane. A critical NaCl concentration for growth of 600 mM was found for the microbial culture isolated from an operational trickling filter, while a value of 375 mM was found for the pure cultureHyphomicrobium GJ21. The substrate degradation appears to be much less susceptible to inhibition by NaCl. Even at 800 mM NaCl relatively high substrate degradation rates are still observed, although this process is again dependent on the NaCl concentration. Here the substrate elimination is due to the maintenance requirements of the microorganisms. The inhibition of the dichloromethane elimination was also investigated in a laboratory scale trickling filter. The results of these experiments confirmed those obtained in the batch experiments. At NaCl concentrations exceeding 600 mM a considerable elimination of dichloromethane was still observed for during several months of operation. These observations indicate that the inhibition of microbial growth offers a significant control parameter against excessive biomass growth in biological trickling filters for waste gas treatment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 1279-1287 
    ISSN: 0006-3592
    Keywords: waste gas ; trickling filter ; biofilm ; dichlo-romethane ; biofiltration ; air pollution ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Clogging is well-known phenomenon in the application of a biological tricking filter for both waste gas and wastewater treatment. Nevertheless, no such observations or even significant changes in pressure drop have ever been recorded during the long-term processing of a waste gas containing dichloromethane (DCM) as a sole carbon source. To obtain more information about this phenomenon, a detailed investigation into the carbon balance of this system has been performed. During a period of operation of about 200 days the rate of DCM elimination and the overall rate of CO2 production in a continuously operating filter were therefore recorded daily, thus allowing an evaluation of the overall conversion process. Furthermore pseudo-steady-state measurements were carried out on a regular basis. These experiments reveal more detailed information on the actual DCM conversion by Hyphomicrobium GJ21 within the biofilm. The combined results of the experiments described in this article show that on an overall basis a so-called biological equilibrium, i.e., a situation of no net biomass accumulation, is obtained in the course of time. It appeared that the overall rate of CO2 production slowly increased until, after some 200 days, it finally counter-balanced the conversion rate of DCM on a molar-basis. As opposed to this result, all pseudo-steady-state experiments indicated that about 60% of the eliminated primary carbon source is converted into biomass. This is in good agreements with results from microkinetic experiments. Based on these results and evaluation of the experimental data, it is concluded that interactions between several microbial populations are involved in this biological equilibrium. These interactions include both biomass growth and biomass degradation. © 1994 John Wiley & Sons, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1994-06-01
    Print ISSN: 0923-9820
    Electronic ISSN: 1572-9729
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-04-01
    Print ISSN: 0003-021X
    Electronic ISSN: 1558-9331
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...