ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 1987-01-01
    Description: The concept of lineage fidelity in acute leukemia has recently been challenged by the finding of rearrangements of the immunoglobulin heavy chain genes in a leukemic cell line and in a small number of sporadic cases of acute nonlymphocytic leukemia with a monocytic phenotype. We therefore screened leukemic blood or bone marrow samples of 33 adult patients with acute nonlymphocytic leukemia of FAB types M4 (23 patients) and M5 (10 patients); 28 were obtained at diagnosis and 5 at relapse. All cases were well characterized pathologically and histochemically. Cytogenetic analysis performed in each case demonstrated karyotypes that were representative of those generally seen in these types of leukemia, with a clonal abnormality present in all except 9 of 32 patients who were successfully studied. DNA prepared from each sample was digested with the restriction enzyme BamH1 and analyzed by Southern blot hybridization to probes for the JH region of the immunoglobulin heavy chain. All 33 cases had DNA retained in the germline configuration with no evidence of rearrangement. This finding supports the concept of lineage fidelity, and suggests that true interlineage infidelity, myeloid to lymphoid, is a rare occurrence in adult acute nonlymphocytic leukemia.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1987-11-01
    Description: An identical reciprocal translocation between the long arms of chromosomes 3 and 21 with breakpoints in bands 3q26 and 21q22, t(3;21)(q26;q22), was found in three male patients with the blast phase of chronic myelogenous leukemia (CML). The abnormality was clonal in all three patients and was always accompanied by either a standard or variant 9;22 translocation resulting in a Philadelphia chromosome (Ph1). In two cases, the t(3;21) was the only abnormality other than a t(9;22) in the primary clone. Serial studies of one patient demonstrated that the t(3;21) occurred as a result of clonal evolution near the time of development of the blast phase. We have not observed the t(3;21) in greater than 500 patients with CML in the chronic phase. Thus, the t(3;21) is a new recurring cytogenetic abnormality associated with the blast phase of CML.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1994-02-01
    Description: Rearrangements of chromosome band 11q23 are common in infant leukemias, comprising more than 70% of the observed chromosome abnormalities in children less than 1 year of age. The MLL gene, which is located at the 11q23 breakpoint in infant, childhood, and adult acute leukemias, has been cloned and has homology to the Drosophila trithorax gene. The breakpoints in MLL are restricted to an 8.3-kilobase pair (kb) region of the gene that is involved in translocations with as many as 29 other chromosomal regions in a number of phenotypically distinct acute leukemias. We have detected an identical, clonal, nonconstitutional rearrangement of the MLL gene in peripheral blood cells from a pair of female infants twins with acute lymphoblastic leukemia (ALL) and a t(11;19)(q23;p13.3). The detection of nonidentical IGH rearrangements suggests that the MLL rearrangement took place in a B-cell precursor or hematopoietic stem cell in one twin which was transferred in utero to the other fetus resulting in ALL with an identical aneuploid karyotype in both infants. We speculate that the other MLL-related infant leukemias may also develop in utero, and that the rearrangements may occur consistently in stem cells or early precursor cells, accounting for the frequency of mixed-lineage leukemia in infants.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1993-12-15
    Description: Chromosome band 11q23 is frequently involved in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) de novo, as well as in myelodysplastic syndromes (MDS) and lymphoma. Five percent to 15% of patients treated with chemotherapy for a primary neoplasm develop therapy-related AML (t-AML) that may show rearrangements, usually translocations involving band 11q23 or, less often, 21q22. These leukemias develop after a relatively short latent period and often follow the use of drugs that inhibit the activity of DNA-topoisomerase II (topo II). We previously identified a gene, MLL (myeloid-lymphoid leukemia or mixed-lineage leukemia), at 11q23 that is involved in the de novo leukemias. We have studied 17 patients with t-MDS/t-AML, 12 of whom had cytogenetically detectable 11q23 rearrangements. Ten of the 12 t-AML patients had received topo II inhibitors and 9 of these, all with balanced translocations of 11q23, had MLL rearrangements on Southern blot analysis. None of the patients who had not received topo II inhibitors showed an MLL rearrangement. Of the 5 patients lacking 11q23 rearrangements, some of whom had monoblastic features, none had an MLL rearrangement, although 4 had received topo II inhibitors. Our study indicates that the MLL gene rearrangements are similar both in AML that develops de novo and in t-AML. The association of exposure to topo II- reactive chemotherapy with 11q23 rearrangements involving the MLL gene in t-AML suggests that topo II may play a role in the aberrant recombination events that occur in this region both in AML de novo and in t-AML.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1987-01-01
    Description: The concept of lineage fidelity in acute leukemia has recently been challenged by the finding of rearrangements of the immunoglobulin heavy chain genes in a leukemic cell line and in a small number of sporadic cases of acute nonlymphocytic leukemia with a monocytic phenotype. We therefore screened leukemic blood or bone marrow samples of 33 adult patients with acute nonlymphocytic leukemia of FAB types M4 (23 patients) and M5 (10 patients); 28 were obtained at diagnosis and 5 at relapse. All cases were well characterized pathologically and histochemically. Cytogenetic analysis performed in each case demonstrated karyotypes that were representative of those generally seen in these types of leukemia, with a clonal abnormality present in all except 9 of 32 patients who were successfully studied. DNA prepared from each sample was digested with the restriction enzyme BamH1 and analyzed by Southern blot hybridization to probes for the JH region of the immunoglobulin heavy chain. All 33 cases had DNA retained in the germline configuration with no evidence of rearrangement. This finding supports the concept of lineage fidelity, and suggests that true interlineage infidelity, myeloid to lymphoid, is a rare occurrence in adult acute nonlymphocytic leukemia.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1994-08-15
    Description: Previously we had characterized the t(1;7)(p34;q34) translocation from HSB-2. This translocation fused the beta T-cell receptor gene (TCRB) constant region and transcriptional enhancer with the type I transcription unit of the LCK gene on the derivative 1 [der(1)] chromosome. The type II promoter was translocated to the der(7) chromosome. Regarding the mechanism of the t(1;7) in HSB-2, we identified an alternating purine-pyrimidine tract (G-T)17 at the 1p34/LCK breakpoint. Additionally, sequence analysis of both breakpoint junctions provided data that implicate the V(D)J recombinase in formation of the t(1;7). A heptamer-nonamer recognition sequence with a 12-bp spacer was found in the immediate vicinity of the 1p34/LCK breakpoint and, thus, chromosomal breakage at 1p34 may be explained as resulting from recombinase activity. Because phosphorylation of Tyr-505 in vivo regulates the tyrosine kinase activity of p56lck we amplified a region from LCK exon 12 that contains the codon for Tyr-505 and showed no mutation of this codon in HSB-2 DNA and, therefore, p56lck in HSB-2 is not activated by mutation of Tyr-505. We have analyzed LCK gene expression in HSB-2 and SUP-T12 cell lines. RNase protection analysis identified almost exclusively type I transcripts in HSB-2. An independent t(1;7) in SUP-T12 also resulted in the juxtaposition of LCK to TCRB. The breakpoint in SUP-T12 occurred 2 kb 5′ of the type II promoter, leaving an intact LCK gene on the der(1) chromosome. RNase protection analysis identified both type I and type II LCK transcripts in a 3:1 ratio in SUP-T12. Factors other than proximity to the TCRB enhancer must affect promoter utilization in this cell line.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1992-08-01
    Description: Homozygous and hemizygous deletions of the interferon A (IFNA) and IFNB genes have been frequently observed in acute leukemia cell lines, primary acute leukemia cases, and gliomas. Because IFNs have an antiproliferative effect, selection against the IFN alpha/beta system could play a role or accompany the development of the malignant phenotype. Although the deletion of the IFNA/B genes could interrupt an autocrine loop that controls cell proliferation, cells would still respond to exogenous IFN alpha/beta and, thus, lesions at the receptor or signal transduction level should also be present to render cells resistant to exogenous IFN alpha/beta. To test if selection against the IFN system was operating in acute leukemias, the sensitivity to the antiproliferative effect of IFN alpha 2 was studied in acute leukemia cell lines with and without alterations of the IFNA/B genes. We found that 10 of 11 acute leukemia cell lines with alterations of the IFNA/B genes were resistant to the antiproliferative effect of IFN alpha 2, whereas only two of eight cell lines with normal IFNA/B genes were IFN- resistant. We then examined the possibility that an alteration of the receptor expression could account for the lack of response to IFN alpha 2. No significant alteration in the expression or structure of the IFN alpha receptor was observed. We also studied the downmodulation of the alpha subunit of the IFN alpha receptor upon IFN alpha 2 binding. One cell line with deletion of the IFNA/B genes showed impaired downmodulation of the IFN alpha receptor. The data presented here suggest that selection against the IFN alpha/beta system could play a role or accompany the development of the malignant phenotype.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1993-12-15
    Description: Chromosome band 11q23 is frequently involved in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) de novo, as well as in myelodysplastic syndromes (MDS) and lymphoma. Five percent to 15% of patients treated with chemotherapy for a primary neoplasm develop therapy-related AML (t-AML) that may show rearrangements, usually translocations involving band 11q23 or, less often, 21q22. These leukemias develop after a relatively short latent period and often follow the use of drugs that inhibit the activity of DNA-topoisomerase II (topo II). We previously identified a gene, MLL (myeloid-lymphoid leukemia or mixed-lineage leukemia), at 11q23 that is involved in the de novo leukemias. We have studied 17 patients with t-MDS/t-AML, 12 of whom had cytogenetically detectable 11q23 rearrangements. Ten of the 12 t-AML patients had received topo II inhibitors and 9 of these, all with balanced translocations of 11q23, had MLL rearrangements on Southern blot analysis. None of the patients who had not received topo II inhibitors showed an MLL rearrangement. Of the 5 patients lacking 11q23 rearrangements, some of whom had monoblastic features, none had an MLL rearrangement, although 4 had received topo II inhibitors. Our study indicates that the MLL gene rearrangements are similar both in AML that develops de novo and in t-AML. The association of exposure to topo II- reactive chemotherapy with 11q23 rearrangements involving the MLL gene in t-AML suggests that topo II may play a role in the aberrant recombination events that occur in this region both in AML de novo and in t-AML.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1994-02-01
    Description: Rearrangements of chromosome band 11q23 are common in infant leukemias, comprising more than 70% of the observed chromosome abnormalities in children less than 1 year of age. The MLL gene, which is located at the 11q23 breakpoint in infant, childhood, and adult acute leukemias, has been cloned and has homology to the Drosophila trithorax gene. The breakpoints in MLL are restricted to an 8.3-kilobase pair (kb) region of the gene that is involved in translocations with as many as 29 other chromosomal regions in a number of phenotypically distinct acute leukemias. We have detected an identical, clonal, nonconstitutional rearrangement of the MLL gene in peripheral blood cells from a pair of female infants twins with acute lymphoblastic leukemia (ALL) and a t(11;19)(q23;p13.3). The detection of nonidentical IGH rearrangements suggests that the MLL rearrangement took place in a B-cell precursor or hematopoietic stem cell in one twin which was transferred in utero to the other fetus resulting in ALL with an identical aneuploid karyotype in both infants. We speculate that the other MLL-related infant leukemias may also develop in utero, and that the rearrangements may occur consistently in stem cells or early precursor cells, accounting for the frequency of mixed-lineage leukemia in infants.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1992-08-01
    Description: Homozygous and hemizygous deletions of the interferon A (IFNA) and IFNB genes have been frequently observed in acute leukemia cell lines, primary acute leukemia cases, and gliomas. Because IFNs have an antiproliferative effect, selection against the IFN alpha/beta system could play a role or accompany the development of the malignant phenotype. Although the deletion of the IFNA/B genes could interrupt an autocrine loop that controls cell proliferation, cells would still respond to exogenous IFN alpha/beta and, thus, lesions at the receptor or signal transduction level should also be present to render cells resistant to exogenous IFN alpha/beta. To test if selection against the IFN system was operating in acute leukemias, the sensitivity to the antiproliferative effect of IFN alpha 2 was studied in acute leukemia cell lines with and without alterations of the IFNA/B genes. We found that 10 of 11 acute leukemia cell lines with alterations of the IFNA/B genes were resistant to the antiproliferative effect of IFN alpha 2, whereas only two of eight cell lines with normal IFNA/B genes were IFN- resistant. We then examined the possibility that an alteration of the receptor expression could account for the lack of response to IFN alpha 2. No significant alteration in the expression or structure of the IFN alpha receptor was observed. We also studied the downmodulation of the alpha subunit of the IFN alpha receptor upon IFN alpha 2 binding. One cell line with deletion of the IFNA/B genes showed impaired downmodulation of the IFN alpha receptor. The data presented here suggest that selection against the IFN alpha/beta system could play a role or accompany the development of the malignant phenotype.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...