ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2018-01-25
    Print ISSN: 1754-2189
    Electronic ISSN: 1750-2799
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
  • 5
    Publication Date: 2017-09-28
    Description: Precise and efficient manipulation of genes is crucial for understanding the molecular mechanisms that govern human hematopoiesis and for developing novel therapies for diseases of the blood and immune system. Current methods do not enable precise engineering of complex genotypes that can be easily tracked in a mixed population of cells. We describe a method to multiplex homologous recombination (HR) in human hematopoietic stem and progenitor cells and primary human T cells by combining rAAV6 donor delivery and the CRISPR/Cas9 system delivered as ribonucleoproteins (RNPs). In addition, the use of reporter genes allows FACS-purification and tracking of cells that have had multiple alleles or loci modified by HR. We believe this method will enable broad applications not only to the study of human hematopoietic gene function and networks, but also to perform sophisticated synthetic biology to develop innovative engineered stem cell-based therapeutics.
    Electronic ISSN: 2050-084X
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-11-16
    Electronic ISSN: 2050-084X
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-11-13
    Description: While hematopoietic stem and progenitor cells (HSPCs) were thought to rely mainly on glycolysis for energy supply, emerging evidence suggests that defects in mitochondrial functions can impact HSPC development with respect to self-renewal, differentiation and aging. The exact mechanisms underlying metabolic reprogramming and cell fate decisions during human hematopoiesis, however, remain elusive. Biallelic mutations in the mitochondrial enzyme adenylate kinase 2 (AK2), cause reticular dysgenesis (RD), one of the most profound forms of severe combined immunodeficiency (SCID). AK2 catalyzes the interconversion between adenine nucleotides and thereby controls the availability of ADP for oxidative phosphorylation. Clinically, RD patients not only present with profound lymphopenia, typical for classic SCID, but also suffer from severe congenital neutropenia. The developmental arrest across the T, NK and granulocytic lineages suggests that AK2 deficiency causes a metabolic defect with global impact on hematopoiesis. Our prior work in induced pluripotent stem cells (iPSCs) from RD patients has shown that maturation-arrested iPSC-derived HSPCs exhibit increased oxidative stress and an energy-depleted adenine nucleotide profile, suggesting that AK2-regulated mitochondrial bioenergetics play an integral role in HSPC differentiation. Therefore, RD serves as an excellent model to study the impact of mitochondrial metabolism during human HSPC development. Methods: Since iPSCs do not recapitulate definitive hematopoiesis, we developed an AK2 biallelic knock-out model in primary human HSPCs using CRISPR/Cas9 gene editing. Employing a homologous recombination-mediated dual color reporter strategy, we were able to select for HSPCs with biallelic AK2 knock-out. HSPCs edited at the safe harbor AAVS1 site were used as a control. FACS purified AK2-/- and AAVS1-/- HSPCs were in vitro differentiated along the granulocytic lineage, and cells at various differentiation stages were sorted for RNA-seq and metabolomics analysis. Results: We analyzed the myeloid differentiation potential of AK2-/- HSPCs in vitro. Compared to AAVS1-/- controls, AK2-/- HSPCs displayed a severely decreased colony forming potential of both myeloid and erythroid lineages. In addition, AK2-/- HSPCs showed a granulocytic maturation arrest at the HLA-DR-, CD117+ promyelocyte stage, consistent with the characteristic phenotype observed in RD patients. We then performed RNA-seq studies on in vitro differentiated promyelocyte and neutrophil subpopulations derived from AK2-/- and control HSPCs. The RNA-seq analysis showed differential gene expression in glutathione metabolism and IL-10 signaling pathways, suggesting an increase in oxidative stress and inflammation, respectively, caused by AK2 deficiency. In addition, genes implicated in antimicrobial function and granule synthesis were downregulated in AK2-/- neutrophils, suggesting a functional defect. Liquid chromatography-mass spectrometry (LC-MS/MS) studies to delineate differences in metabolite profile conferred by AK2 deficiency at different stages of HSPC development are currently in progress. Conclusions: We have established the first cell-traceable biallelic AK2 CRISPR knock-out model in primary human HSPCs that recapitulates the myeloid phenotype of RD patients. This model allows us to profile AK2 knock-out cells at different developmental stages. AK2-/- granulocyte precursors showed a transcriptional signature suggestive of worsening oxidative stress, inflammation and defective effector cell functions during maturation. To understand the mechanistic underpinnings for these observations we are now using a global metabolomics approach to profile the changes in energy metabolites that occur during development in AK2-deficient and control HSPC subpopulations. Understanding how metabolism governs differentiation and self-renewal of human HSPCs has important translational implications to improve hematopoietic stem cell products and transplantation outcomes. Disclosures Morrison: Frequency Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees; OncoMed Pharmaceuticals: Equity Ownership; GI Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Kolon Gene Therapeutics: Consultancy; Protein Fluidics: Other: Stock Options.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-11-29
    Description: Diamond Blackfan Anemia (DBA) is associated with anemia, congenital abnormalities, and cancer. The disease typically presents within the first year of life. Approximately 70% of DBA patients possess a mutations in one of at least 12 ribosomal proteins, with RPS19 and RPL11 being the most prevalent, accounting for over 25% and 5% of cases respectively. Current therapies for DBA have undesirable side effects, including iron overload from repeated transfusions or infections from immunosuppressive drugs and stem cell transplantation. Nemo-like Kinase (NLK) is chronically hyper-activated in RPS19- and RPL11-haploinsufficient murine and human models of DBA, as well as erythroid progenitors from DBA patients. In an RPS19-insufficient human model, genetic silencing of NLK (shRNA) increased erythroid expansion by 2.2 fold, indicating aberrant NLK activation contributes to the pathogenesis of the disease. In an independent, high-throughput kinase inhibitor screen examining progenitor expansion in RPS19-insufficient Kit+ murine cells, a number of compounds were identified that increased progenitor expansion. SB431542 and SD208 are recognized TGFβ inhibitor compounds, but were the only TGFβ inhibitors of a panel of 11 that increased progenitor expansion. Both active compounds robustly inhibited NLK activity in vitro and in vivo while the remaining 9 inhibitors had no significant impact on NLK. Both compounds increased erythroid expansion in murine (3.1 and 5.4 fold) and human (3.2 and 6.3 fold) models of DBA with no effect on wild type erythropoiesis (EC50 5 µM and 0.7 µM). No further increase in erythroid expansion was observed when NLK expression was silenced by shRNA. Virtually identical results were observed in CD34+ progenitors from 3 DBA patient bone marrow aspirates with 2.3, 1.9 and 2.1 fold increases in CD235+ erythroblast generation compared to untreated. NLK hyperactivation was limited to differentiating committed erythroid progenitors and was not detected in megakaryocytic, other myeloid progenitors or lymphoblastoid cells lines from DBA patients. During differentiation, non-erythroid lineages upregulate miR181, which results in NLK transcript degradation and loss of NLK expression. The absence of NLK in non-erythroid progenitors prevents NLK activation during ribosomal insufficiency. CRISPR/Cas9 mutation of the miR181 binding site in the NLK 3'UTR in RPS19-insufficient CD34+ HSPCs prevented NLK downregulation, increased NLK activity, and sensitized megakaryocyte and other myeloid lineages (80.5% and 76% reduction relative to controls). This is comparable to the erythroid expansion defect in RPS19-insufficiency (80.7% reduction). In differentiating erythroid progenitors, RPS19 insufficiency increased phosphorylation of the mTORC1 component Raptor (5.3 fold), reducing mTOR activity by 82%. This was restored to basal levels upon pharmacological or genetic inhibition of NLK. To compensate for a reduction in ribosomes, stimulating mTORC1 activity with leucine has been proposed to increase translational efficiency in DBA patients. Probably due to NLK phosphorylation of raptor, DBA patients did not respond as anticipated. While leucine treatment did increase mTOR activity in both control (100% to 188%) and RPS19-insufficiency (27 % to 42% of control), the combined treatment of leucine with NLK inhibition resulted in increased mTOR activity to 142% of control and significantly improved erythroid expansion. Identification of aberrantly activated enzymes, such as NLK, that are specifically expressed in erythroid progenitors, offer therapeutic promise as potential druggable targets in the clinical management of DBA that can be used in combination with existing therapies. Disclosures Glader: Agios Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding. Porteus:CRISPR Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees. Flygare:LU Holding: Patents & Royalties: Patent.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-11-29
    Description: Sickle cell disease (SCD) is an inherited blood disorder associated with a debilitating chronic illness. SCD is caused by a point mutation in the β-globin gene (HBB). A single nucleotide substitution converts glutamic acid to a valine that leads to the production of sickle hemoglobin (HbS), which impairs the function of red blood cells. Here we show that delivery of Streptococcus pyogenes (Sp) Cas9 protein and CRISPR guide RNA as a ribonucleoprotein complex (RNP) together with a short single-stranded DNA donor (ssODN) template into CD34+ hematopoietic stem and progenitor cells (HSPCs) from SCD patients' bone marrow (BM) was able to correct the sickling HBB mutation, with up to 33% homology directed repair (HDR) without selection. Further, CRISPR/Cas9 cutting of HBB in SCD HSPCs induced gene conversion between the HBB sequences in the vicinity of the target locus and the homologous region in δ-globin gene (HBD), with up to 4.4% additional gene correction mediated by the HBD conversion in cells with Cas9 cutting only. The erythrocytes derived from gene-edited cells showed a marked reduction of the HbS level, increased expression of normal adult hemoglobin (HbA), and a complete loss of cell sickling, demonstrating the potential in curing SCD. We performed extensive off-target analysis of gene-edited SCD HSPCs using the in-silico prediction tool COSMID and unbiased, genome-wide assay Guide-Seq, revealing a gross intrachromosomal rearrangement event between the on- and off-target Cas9 cutting sites. We used a droplet digital PCR assay to quantify deletion and inversion events from Day 2 to Day 12 after RNP delivery, and found that large chromosomal deletion decreased from 1.8% to 0.2%, while chromosomal inversion maintained at 3.3%. We demonstrated that the use of high-fidelity SpCas9 (HiFi Cas9 by IDT) significantly reduced off-target effects and completely eliminated the intrachromosome rearrangement events, while maintaining the same level of on-target gene editing, leading to high-efficiency gene correction with increased specificity. In order to determine if gene-corrected SCD HSPCs retain the ability to engraft, CD34+ cells from the BM of SCD patients were treated with Cas9/gRNA RNP and ssODN donor for HBB gene correction, cryopreserved at Day 2 post genome editing, then intravenously transplanted into NSG mice shortly after thawing. These mice were euthanized at Week 16 after transplantation, and the BM was harvested to determine the engraftment potential. An average of 7.5 ±5.4% of cells were double positive for HLA and hCD45 in mice injected with gene-edited CD34+ cells, compared to 16.8 ±9.3% with control CD34+ cells, indicating a good level of engraftment of gene-corrected SCD HSPCs. A higher fraction of human cells were positive for CD19 (66 ±28%), demonstrating lymphoid lineage bias. DNA was extracted from unsorted cells, CD19 or CD33 sorted cells for gene-editing analysis; the HBB editing rates were respectively 29.8% HDR, 2.4% HBD conversion, and 42.8% non-homologous end joining (NHEJ) pretransplantation, and editing rates at Week 16 posttransplantation were respectively 8.8 ±12% HDR, 1.8 ±1.7% HBD conversion, and 24.5 ±12% NHEJ. The highly variable editing rate and indel diversity in gene-edited cells at Week 16 in all four transplanted mice suggest clonal dominance of a limited number of HSPCs after transplantation. Taken together, our results demonstrate highly efficient gene and phenotype correction of the sickling mutation in BM HSPCs from SCD patients mediated by HDR and HBD conversion, and the ability of gene-edited SCD HSPCs to engraft in vivo. We also demonstrate the importance of genome-wide analysis for off-target analysis and the use of HiFi Cas9. Our results provide further evidence for the potential of moving genome editing-based SCD treatment into clinical practice. Acknowledgments: This work was supported by the Cancer Prevention and Research Institute of Texas grants RR140081 and RP170721 (to G. B.), and the National Heart, Lung and Blood Institute of NIH (1K08DK110448 to V.S.) Disclosures Porteus: CRISPR Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-11-29
    Description: Hematopoietic stem cell (HSC) differentiation is accompanied by a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS) to meet the increasing energy demand during proliferation and differentiation. However, the role of mitochondrial metabolism in HSC differentiation goes beyond ATP production. Metabolites generated during mitochondrial metabolism may impact in HSC fate decisions through stable epigenetic modifications. Despite some progress in understanding mitochondrial communication during HSC development, their role in human hematopoiesis remains largely elusive, where the lack of appropriate model systems poses a major obstacle. Reticular Dysgenesis (RD), a rare and particularly severe form of severe combined immunodeficiency (SCID), offers an attractive model for studying the role of mitochondrial metabolism in hematopoiesis. RD is an autosomal recessive disease caused by biallelic mutations of the mitochondrial enzyme Adenylate Kinase 2 (AK2). AK2 catalyzes the reversible phosphorylation of adenosine monophosphate (AMP) to adenosine diphosphate (ADP), which serves as the substrate for the ATP synthase. In addition to defective lymphocyte development typical of classic SCID, RD patients also suffer from impaired myeloid development, suggestive of a global defect in hematopoiesis. In a human induced pluripotent stem cell (iPSC) model for RD, hematopoietic stem and progenitor cells (HSPCs) recapitulate a profound maturation arrest of the myeloid lineage, increased oxidative stress and an energy-depleted metabolite and transcriptional profile. We hypothesize that AK2 defects drive hematopoietic cell fate decisions through changes in metabolites that regulate the activities of DNA/histone modifying enzymes and result in stable epigenetic modifications. Methods: Since iPSCs are not suitable to model the epigenetic characteristics of definitive hematopoiesis, we developed a novel model system in which we deleted AK2 in primary human HSCs using CRISPR/Cas9 gene editing technique. We found a highly effective single-guide RNA (sgRNA) targeting the catalytic LID domain of the AK2 gene to introduce directed DNA double stranded breaks (DSBs), and use a homologous recombination (HR)-mediated dual reporter system to track and isolate cells with biallelic AK2 disruption. Results: Our single-color GFP reporter system consistently produces a 〉60% GFP+ population of AK2-targeted CD34+ umbilical cord blood (UCB) cells. With dual GFP/BFP reporters, we were able to achieve 6% GFP/BFP double positive cells with confirmed biallelic AK2 knock-out. Since HR events on one allele are biologically linked to CRISPR/Cas9 mediated DSBs on the other, we assessed insertion and/or deletion (INDEL) frequency and protein expression in a single reporter (GFP+) population of AK2-targeted UCBs. We detected an INDEL frequency of over 90% on the non-HR alleles along with nearly absent AK2 protein expression by Western Blot. These results indicated that the highly efficient single-color reporter system with 〉60% targeting efficiency is sufficient to achieve an AK2 biallelic knock-out population in primary HSCs. in vitro myeloid differentiation of these AK2-targeted HSCs recapitulates the RD phenotype with impaired neutrophil but preserved monocyte development. Conclusion: This novel disease model for RD will now allow us to examine the cellular and molecular impact of perturbations in metabolism on human HSC development. We will investigate the effect on differentiation potential, metabolite profile, transcriptome and epigenome in vitro as well as in a xenograft mouse model. Elucidating how metabolism governs differentiation and self-renewal of human HSCs will not only advance our basic understanding of many blood and immune diseases, but has important translational implications for improving the use of HSCs in hematopoietic stem cell transplantation, gene and cell therapy. Disclosures Porteus: CRISPR Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...