ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1982-01-01
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: The primary objective of this study was the development of a computational fluid dynamics (CFD) based turbomachinery airfoil analysis and design system, controlled by a graphical user interface (GUI). The computer codes resulting from this effort are referred to as the Turbomachinery Analysis and Design System (TADS). This document is intended to serve as a user's manual for the computer programs which comprise the TADS system. TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver (RVCQ3D) in an interactive package. Throughflow analysis capability was developed in ADPAC through the addition of blade force and blockage terms to the governing equations. A GUI was developed to simplify user input and automate the many tasks required to perform turbomachinery analysis and design. The coupling of various programs was done in a way that alternative solvers or grid generators could be easily incorporated into the TADS framework.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-CR-198441 , NAS 1.26:198441 , E-10059 , NIPS-96-06878
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: The focus of NASA Contract NAS3-25950 Task 23 was to numerically investigate the flow through an axial compressor inner-banded stator seal cavity. The Allison/NASA developed ADPAC code was used to obtain all flow predictions. Flow through a labyrinth stator seal cavity of a high-speed compressor was modeled by coupling the cavity flow path and the main flow path of the compressor. A grid resolution study was performed to guarantee adequate grid spacing was used. Both unsteady rotor-stator-rotor interactions and steady-state isolated blade calculations were performed with and without the seal cavity present. A parameterized seal cavity study of the high-speed stator seal cavity collected a series of solutions for geometric variations. The parameter list included seal tooth gap, cavity depth, wheel speed, radial mismatch of hub flowpath, axial trench gap, hub corner treatments, and land edge treatments. Solution data presented includes radial and pitchwise distributions of flow variables and particle traces describing the flow character.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-198504 , E-10340 , NAS 1.26:198504
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: The overall objective of this study was to develop a 3-D numerical analysis for compressor casing treatment flowfields. The current version of the computer code resulting from this study is referred to as ADPAC (Advanced Ducted Propfan Analysis Codes-Version 7). This report is intended to serve as a computer program user's manual for the ADPAC code developed under Tasks 6 and 7 of the NASA Contract. The ADPAC program is based on a flexible multiple- block grid discretization scheme permitting coupled 2-D/3-D mesh block solutions with application to a wide variety of geometries. Aerodynamic calculations are based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. Steady flow predictions are accelerated by a multigrid procedure. An iterative implicit algorithm is available for rapid time-dependent flow calculations, and an advanced two equation turbulence model is incorporated to predict complex turbulent flows. The consolidated code generated during this study is capable of executing in either a serial or parallel computing mode from a single source code. Numerous examples are given in the form of test cases to demonstrate the utility of this approach for predicting the aerodynamics of modem turbomachinery configurations.
    Keywords: Computer Programming and Software
    Type: NASA-CR-195472 , E-9662 , NAS 1.26:195472
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: The primary objective of this study was the development of a CFD (Computational Fluid Dynamics) based turbomachinery airfoil analysis and design system, controlled by a GUI (Graphical User Interface). The computer codes resulting from this effort are referred to as TADS (Turbomachinery Analysis and Design System). This document is the Final Report describing the theoretical basis and analytical results from the TADS system, developed under Task 18 of NASA Contract NAS3-25950, ADPAC System Coupling to Blade Analysis & Design System GUI. TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver (RVCQ3D) in an interactive package. Throughflow analysis capability was developed in ADPAC through the addition of blade force and blockage terms to the governing equations. A GUI was developed to simplify user input and automate the many tasks required to perform turbomachinery analysis and design. The coupling of the various programs was done in such a way that alternative solvers or grid generators could be easily incorporated into the TADS framework. Results of aerodynamic calculations using the TADS system are presented for a highly loaded fan, a compressor stator, a low speed turbine blade and a transonic turbine vane.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-CR-198440 , NAS 1.26:198440 , E-10058 , NIPS-96-08139
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: This paper presents the results of a computational study on the effect of axial spacing between the vane and blade rows of a transonic turbine stage. The study was performed on the mid-span section of a high-pressure turbine stage using a quasi-3D, unsteady Navier-Stokes solver that provides a fully interactive vane-blade unsteady flow solution. Three different cases were considered, corresponding to axial spacings of 20%, 40%, and 60% of the vane axial chord. The calculated vane and blade pressure distributions for the 40 percent case were found to compare favorably with experimental measurements acquired in a short-duration shock tunnel. In addition, the analysis shows a marked increase in the amplitude of the unsteady pressure fluctuations on the vane and blade surfaces as the spacing decreases. Time-averaged stage adiabatic efficiency predictions for each case are presented to show the effect of spacing on aerodynamic performance.
    Keywords: Aircraft Propulsion and Power
    Type: Loss Mechanisms and Unsteady Flows in Turbomachines; AGARD-CP-571
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: The primary objective of this study was the development of a computational fluid dynamics (CFD) based turbomachinery airfoil analysis and design system, controlled by a graphical user interface (GUI). The computer codes resulting from this effort are referred to as the Turbomachinery Analysis and Design System (TADS). This document describes the theoretical basis and analytical results from the TADS system. TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver (RVCQ3D) in an interactive package. Throughflow analysis capability was developed in ADPAC through the addition of blade force and blockage terms to the governing equations. A GUI was developed to simplify user input and automate the many tasks required to perform turbomachinery analysis and design. The coupling of various programs was done in a way that alternative solvers or grid generators could be easily incorporated into the TADS framework. Results of aerodynamic calculations using the TADS system are presented for a highly loaded fan, a compressor stator, a low-speed turbine blade, and a transonic turbine vane.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-CR-198440 , NAS 1.26:198440 , E-10058 , NIPS-96-06885
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-27
    Description: Concepts selected to reduce fan generated noise in a turbofan are presented. Near-sonic flow at the fan inlet to reduce upstream propagated noise and the use of long-chord vanes to reduce downstream noise is discussed. The near-sonic condition at the rotor inlet plane was achieved by designing for high specific mass flow and by maintaining the high flow at reduced power by variable stators and variable fan exhaust nozzle. The long-chord vanes reduce response to unsteady flow. The acoustic design showed that long-chord stators would significantly reduce turbofan source noise and that other stator design parameters have no appreciable effect on noise for the spacing and chord length of the turbofan design. Four rig flow paths studied in the aerodynamic preliminary design are discussed. Noise prediction results indicate that a turbofan powered aircraft would be under federal air regulations levels without any acoustic treatment.
    Keywords: MECHANICAL ENGINEERING
    Type: NASA-CR-134780 , EDR-8317
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The primary objective of this study was the development of a Computational Fluid Dynamics (CFD) based turbomachinery airfoil analysis and design system, controlled by a Graphical User Interface (GUI). The computer codes resulting from this effort are referred to as TADS (Turbomachinery Analysis and Design System). This document is the Final Report describing the theoretical basis and analytical results from the TADS system developed under Task 10 of NASA Contract NAS3-27394, ADPAC System Coupling to Blade Analysis & Design System GUI, Phase II-Loss, Design and. Multi-stage Analysis. TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver (RVCQ3D) or a 3-D solver with slip condition on the end walls (B2BADPAC) in an interactive package. Throughflow analysis and design capability was developed in ADPAC through the addition of blade force and blockage terms to the governing equations. A GUI was developed to simplify user input and automate the many tasks required to perform turbomachinery analysis and design. The coupling of the various programs was done in such a way that alternative solvers or grid generators could be easily incorporated into the TADS framework. Results of aerodynamic calculations using the TADS system are presented for a multistage compressor, a multistage turbine, two highly loaded fans, and several single stage compressor and turbine example cases.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-1999-206603 , E-11116 , NAS 1.26:206603
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The overall objective of this study was to develop a 3-D numerical analysis for compressor casing treatment flowfields, and to perform a series of detailed numerical predictions to assess the effectiveness of various endwall treatments for enhancing the efficiency and stall margin of modern high speed fan rotors. Particular attention was given to examining the effectiveness of endwall treatments to counter the undesirable effects of inflow distortion. Calculations were performed using three different gridding techniques based on the type of casing treatment being tested and the level of complexity desired in the analysis. In each case, the casing treatment itself is modeled as a discrete object in the overall analysis, and the flow through the casing treatment is determined as part of the solution. A series of calculations were performed for both treated and untreated modern fan rotors both with and without inflow distortion. The effectiveness of the various treatments were quantified, and several physical mechanisms by which the effectiveness of endwall treatments is achieved are discussed.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-CR-195468 , NAS 1.26:195468 , E-9647
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...