ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 36 (2000), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In the lysogenic state, bacteriophage P4 prevents the expression of its own replication genes, which are encoded in the left operon, through premature transcription termination. The phage factor responsible for efficient termination is a small, untranslated RNA (CI RNA), which acts as an antisense RNA and controls transcription termination by pairing with two complementary sequences (seqA and seqC) located within the leader region of the left operon. A Rho-dependent termination site, timm, was previously shown to be involved in the control of P4 replication gene expression. In the present study, by making use of phage ΦR73 as a cloning vector and of suppressor tRNAGly as a reporter gene, we characterized two additional terminators, t1 and t4. Although transcription termination at neither site requires the Rho factor, only t1 has the typical structure of a Rho-independent terminator. t1 is located between the PLE promoter and the cI gene, whereas t4 is located between cI and timm. Efficient termination at t1 requires the CI RNA and the seqA target sequence; in vitro, the CI RNA enhanced termination at t1 in the absence of any bacterial factor. A P4 mutant, in which the t1 terminator has been deleted, can still lysogenize both Rho+ and Rho− strains and exhibits increased expression of CI RNA. These data indicate that t1 and the Rho-dependent timm terminators are not essential for lysogeny. t1 is involved in CI RNA autoregulation, whereas t4 appears to be the main terminator necessary to prevent expression of the lytic genes in the lysogenic state.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Polynucleotide phosphorylase (PNPase, polyribonucleotide nucleotidyltransferase, EC 2.7.7.8) is one of the cold shock-induced proteins in Escherichia coli and pnp, the gene encoding it, is essential for growth at low temperatures. We have analysed the expression of pnp upon cold shock and found a dramatic transient variation of pnp transcription profile: within the first hour after temperature downshift the amount of pnp transcripts detectable by Northern blotting increased more than 10-fold and new mRNA species that cover pnp and the downstream region, including the cold shock gene deaD, appeared; 2 h after temperature downshift the transcription profile reverted to a preshift-like pattern in a PNPase-independent manner. The higher amount of pnp transcripts appeared to be mainly due to an increased stability of the RNAs. The abundance of pnp transcripts was not paralleled by comparable variation of the protein: PNPase steadily increased about twofold during the first 3 h at low temperature, as determined both by Western blotting and enzymatic activity assay, suggesting that PNPase, unlike other known cold shock proteins, is not efficiently translated in the acclimation phase. In experiments aimed at assessing the role of PNPase in autogenous control during cold shock, we detected a Rho-dependent termination site within pnp. In the cold acclimation phase, termination at this site depended upon the presence of PNPase, suggesting that during cold shock pnp is autogenously regulated at the level of transcription elongation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 6 (1992), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In the prophage P4, expression of the early genes is prevented by premature termination of transcription from the constitutive promoter Ple. In order to identify the region coding for the immunity determinant, we cloned several fragments of P4 DNA and tested their ability to confer immunity to P4 superinfection. A 357 bp long fragment (P4 8418-8774) is sufficient to confer immunity to an infecting P4 phage and to complement the immunity-defective P4 cl405 mutant, both in the presence and in the absence of the helper phage P2.The immunity region covers PLE and the cl locus. We were unable to obtain evidence of translation of the region, thus we suggest that P4 immunity is not elicited by a protein but by a transcript (or transcripts) encoded by the region downstream of the promoter PLE, The promoter PLE appears to be necessary for the expression of P4 immunity: fragments in which the PLE region is deleted did not complement P4 cl405 for lysogenization, although they still interfered with P4 growth. Two complementary sequences downstream of PLE(seqA and seqB) at the 5’and 3’ends of the immunity region play an essential role in the control of P4 immunity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: N15 is a temperate virus of Escherichia coli related to lambdoid phages. However, unlike all other known phages, the N15 prophage is maintained as a low copy number linear DNA molecule with covalently closed ends. The primary immunity system at the immB locus is structurally and functionally comparable to that of lambdoid phages, and encodes the immunity repressor CB. We have characterized a second locus, immA, in which clear plaque mutations were mapped, and found that it encodes an anti-immunity system involved in the choice between the lytic and the lysogenic cycle. Three open reading frames at the immA locus encode an inhibitor of cell division (icd ), an antirepressor (antA) and a gene that may play an ancillary role in anti-immunity (antB ). These genes may be transcribed from two promoters: the upstream promoter Pa is repressed by the immunity repressor CB, whereas the downstream promoter Pb is constitutive. Full repression of the anti-immunity system is achieved by premature transcription termination elicited by a small RNA (CA RNA) produced by processing of the leader transcript of the anti-immunity operon. The N15 anti-immunity system is structurally and functionally similar to the anti-immunity system of bacteriophage P1 and to the immunity system of satellite phage P4.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 6 (1992), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Satellite bacteriophage P4 immunity is encoded within a short DNA region 357 bp long containing the promoter PLE and 275 bp downstream. PLE is active both in the early post-infection phase, when genes necessary for P4 lytic cycle are transcribed from this promoter, and in the lysogenic condition, when expression of the above genes is prevented by prophage immunity.In order to understand how P4 immunity is elicited, we have characterized the transcription pattern during the establishment and the maintenance of the satellite phage P4 lysogenic condition. We found that prophage transcription starting at PLE ends prematurely and the transcripts do not extend beyond 300-400 nucleotides downstream of PLE. Thus P4 immunity acts by causing premature transcription termination rather than by repressing transcription initiation.The P4 immunity region is transcribed in the prophage, but it does not seem to be translated; this region contains two elements (seqA and seqB) of a palindromic sequence. In addition to transcripts about 300 nucleotides long, P4 prophage produces a family of shorter transcripts, about 80 nucleotides long, containing seqA or seqB. Evidence is presented suggesting that SeqB RNA is the trans-acting immunity factor, and that interaction of SeqB RNA with the complementary nascent RNA containing seqA may be involved in bringing about premature transcription termination.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology reviews 17 (1995), S. 0 
    ISSN: 1574-6976
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1574-6976
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract: Bacteriophage P4 autonomous replication may result in the lytic cycle or in plasmid maintenance, depending, respectively, on the presence or absence of the helper phage P2 genome in the Escherichia coli host cell. Alternatively, P4 may lysogenize the bacterial host and be maintained in an immune-integrated condition. A key step in the choice between the lytic / plasmid vs. the lysogenic condition is the regulation of P4 α operon. This operon may be transcribed from two promoters, PLE and PLL, and encodes both immunity (promoter proximal) and replication (promoter distal) functions. PLE is a constitutive promoter and transcription of the downstream replication genes is regulated by transcription termination. The trans-acting immunity factor that controls premature transcription termination is a short RNA encoded in the PLE proximal part of the operon. Expression of the replication functions in the lytic/plasmid condition is achieved by activation of the PLL promoter. Transcription from PLL is insensitive to the termination mechanism that acts on transcription starting from PLE. PLL is also negatively regulated by P4 orf88, the first gene downstream of PLL. An additional control on P4 DNA replication is exerted by the P4 cnr gene product.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 203 (1986), S. 445-450 
    ISSN: 1617-4623
    Keywords: Bacteriophage P4 ; Plasmid ; Replication ; Regulation ; Copynumber
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary After infection of sensitive cells in the absence of a helper phage, the satellite bacteriophage P4 enters a temporary phase of uncommitted replication followed by commitment to either the repressed-integrated condition or the derepressed-high copy number mode of replication. The transient phase and the stable plasmid condition differ from each other in the pattern of protein synthesis, in the rate of P4 DNA replication and in the expression of some gene functions. The regulatory condition characteristic of the P4 plasmid state affects a superinfecting genome, preventing the establishment of the P4 immune condition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2017-04-04
    Electronic ISSN: 1471-2180
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...