ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-28
    Description: A baseline configuration for the dual-aircraft platform (DAP) concept is described and evaluated in a physics-based flight dynamics simulations for two month-long missions as a communications relay in the lower stratosphere above central Florida, within 150-miles of downtown Orlando.The DAP configuration features two large glider-like (130 ft wing span) unmanned aerial vehicles connected via a long adjustable cable (total extendible length of 3000 ft) which effectively sail without propulsion using available wind shear. Use of onboard LiDAR wind profilers to forecast wind distributions are found to be necessary to enable the platform to efficiently adjust flight conditions to remain sailing by finding sufficient wind shear across the platform. The aircraft derive power from solar cells, like a conventional solar aircraft, but also extract wind power using the propeller as a turbine when there is an excess of wind shear available.Month-long atmospheric profiles (at 3-5 min intervals) in the vicinity of 60,000-ft are derived from archived data measured by the 50-Mhz Doppler Radar Wind Profiler at Cape Canaveral and used in the DAP flight simulations. A cursory evaluation of these datasets show that sufficient wind shear for DAP sailing is persistent, suggesting that DAP could potentially sail over 90% of the month-long durations even when limited by modest ascent/descent rates.DAP's novel guidance software uses a non-linear constrained optimization technique to define waypoints such that sailing mode of flight is maintained where possible, and minimal thrust is required where sailing is not practical. A set of constraints are identified which result in waypoints that enable efficient flight (i.e., minimal use of propulsion) over the two month-long flight simulations. Waypoint solutions may need to be tabulated for a wide range of potential atmospheric conditions and stored onboard for quick retrieval on a real DAP.DAP's flight control software uses an unconventional mixture of spacecraft and aircraft control techniques. Flight simulations confirms that this controls approach enables the platform to consistently reach successive waypoints over the month-long flight simulations.The ability of DAP to transition between the sailing mode (i.e., cable tension is high) and standard formation flight (i.e., cable tension is low) is a vital capability (e.g., to enable intermittent turns while stationkeeping). A new method to perform these transitions has been identified and characterized with flight simulation which requires special aircraft modifications.The energy-usage of the DAP configuration during two month-long stationkeeping missions over central Florida (i.e., stationkeeping over Orlando) is evaluated and compared to that of a pure solar aircraft of the same weight and aerodynamic performance. DAP is shown to consistently reduce net propulsion usage while simultaneously increasing solar energy capture.A baseline 700 GHz communications system is described and its performance evaluated for the proposed mission over central Florida. It is found that the variable roll orientation of the aircraft would increase the power required to maintain coverage over the stationkeeping radius of 150 miles (e.g., by as much as 100% when DAP is 150 miles from Orlando), compared to level flight. This effect can be mitigated via additional antenna design complexity or a more restricted stationkeeping radius.
    Keywords: Aircraft Design, Testing and Performance
    Type: HQ-E-DAA-TN62766
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: A baseline configuration for the dual-aircraft platform (DAP) concept is described and evaluated in a physics-based flight dynamics simulations for two month-long missions as a communications relay in the lower stratosphere above central Florida. The DAP features two unmanned aerial vehicles connected via a long adjustable cable which effectively sail back-and-forth using wind velocity gradients and solar energy. Detailed atmospheric profiles in the vicinity of 60,000-ft derived from archived data measured by the 50-Mhz Doppler Radar Wind Profiler at Cape Canaveral are used in the flight simulations. An overview of the novel guidance and flight control strategies are provided. The energy-usage of the baseline configuration during month-long stationkeeping missions (i.e., within 150-mile radius of downtown Orlando) is characterized and compared to that of a pure solar aircraft.
    Keywords: Aircraft Propulsion and Power
    Type: M16-5303 , AIAA Aviation 2016; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) Natural Environments Branch (EV44) provides atmospheric databases and analysis in support of space vehicle design and day-of-launch operations for NASA and commercial launch vehicle programs launching from the NASA Kennedy Space Center (KSC), co-located on the United States Air Force's Eastern Range (ER) at the Cape Canaveral Air Force Station. The ER complex is one of the most heavily instrumented sites in the United States with over 31 towers measuring various atmospheric parameters on a continuous basis. An inherent challenge with large datasets consists of ensuring erroneous data are removed from databases, and thus excluded from launch vehicle design analyses. EV44 has put forth great effort in developing quality control (QC) procedures for individual meteorological instruments, however no standard QC procedures for all databases currently exists resulting in QC databases that have inconsistencies in variables, development methodologies, and periods of record. The goal of this activity is to use the previous efforts to develop a standardized set of QC procedures from which to build meteorological databases from KSC and the ER, while maintaining open communication with end users from the launch community to develop ways to improve, adapt and grow the QC database. Details of the QC procedures will be described. As the rate of launches increases with additional launch vehicle programs, It is becoming more important that weather databases are continually updated and checked for data quality before use in launch vehicle design and certification analyses.
    Keywords: Quality Assurance and Reliability; Meteorology and Climatology
    Type: M17-6446 , American Meteorological Society (AMS) Annual Meeting 2018; Jan 07, 2018 - Jan 11, 2018; Austin, TX; United States|Aviation, Range, and Aerospace Meteorology Symposium; Jan 07, 2018 - Jan 11, 2018; Austin, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-14
    Description: Planning for future National Aeronautics and Space Administration (NASA) missions will encompass a variety of operational and engineering activities that involve a multitude of issues, constraints, and influences derived from the natural environment. This Technical Memorandum (TM) presents a definition of the natural environment, i.e., a description in engineering handbook format of models and data specifically selected to support the architecture development, engineering design, and technology development for NASA's Exploration Systems Development (ESD) initiatives.
    Keywords: Launch Vehicles and Launch Operations; Spacecraft Design, Testing and Performance
    Type: NASA/TM-2016-218229 , M-1420
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...