ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Environment and Resources 25 (2000), S. 685-740 
    ISSN: 1056-3466
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract This paper reviews the available data and models on energy and material flows through the world's 25 largest cities. Throughput is categorized as stored, transformed, or passive for the major flow modes. The aggregate, fuel, food, water, and air cycles are all examined. Emphasis is placed on atmospheric pathways because the data are abundant. Relevant models of urban energy and material flows, demography, and atmospheric chemistry are discussed. Earth system-level loops from cities to neighboring ecosystems are identified. Megacities are somewhat independent of their immediate environment for food, fuel, and aggregate inputs, but all are constrained by their regional environment for supplying water and absorbing wastes. We elaborate on analogies with biological metabolism and ecosystem succession as useful conceptual frameworks for addressing urban ecological problems. We conclude that whereas data are numerous for some individual cities, cross-cutting compilations are lacking in biogeochemical analysis and modeling. Synthesis of the existing information will be a crucial first step. Cross-cutting field research and integrated, multidisciplinary simulations will be necessary.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-05-01
    Print ISSN: 1466-822X
    Electronic ISSN: 1466-8238
    Topics: Biology , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-01-01
    Description: The world’s 25 largest cities comprise only 4% of the global population, but they have substantial impacts on the environment at multiple scales. Here we review what is known of the biogeochemistry of these megacities. Climatic, demographic, and economic data show no patterns across cities, save that wealthier cities have lower growth rates. The flows of water, fuels, construction materials, and food are examined where data are available. Water, which by mass dwarfs the other inputs, is not retained in urban systems, whereas construction materials and food predominate in the urban infrastructure and the waste stream. Fuels are transformed into chemical wastes that have the most far-reaching and global impacts. The effects of megacity resource consumption on geologic, hydrologic, atmospheric, and ecological processes are explored at local, regional, and global scales. We put forth the concepts of urban metabolism and urban succession as organizing concepts for data collection, analysis, and synthesis on urban systems. We conclude that megacities are not the final stage of urban evolution; rather, the climax of urban development will occur at a global scale when human society is at steady state with resource supply rates.
    Print ISSN: 2356-6140
    Electronic ISSN: 1537-744X
    Topics: Natural Sciences in General
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2000-11-01
    Description: ▪ Abstract  This paper reviews the available data and models on energy and material flows through the world's 25 largest cities. Throughput is categorized as stored, transformed, or passive for the major flow modes. The aggregate, fuel, food, water, and air cycles are all examined. Emphasis is placed on atmospheric pathways because the data are abundant. Relevant models of urban energy and material flows, demography, and atmospheric chemistry are discussed. Earth system–level loops from cities to neighboring ecosystems are identified. Megacities are somewhat independent of their immediate environment for food, fuel, and aggregate inputs, but all are constrained by their regional environment for supplying water and absorbing wastes. We elaborate on analogies with biological metabolism and ecosystem succession as useful conceptual frameworks for addressing urban ecological problems. We conclude that whereas data are numerous for some individual cities, cross-cutting compilations are lacking in biogeochemical analysis and modeling. Synthesis of the existing information will be a crucial first step. Cross-cutting field research and integrated, multidisciplinary simulations will be necessary.
    Print ISSN: 1056-3466
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...