ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Years
  • 1
    Publication Date: 2019-07-13
    Description: Insoluble organic matter (IOM) constitutes a major proportion, 70-99%, of the total organic carbon found in primitive chondrites [1, 2]. One characteristic morphological component of IOM is nanoglobules [3, 4]. Some nanoglobules exhibit large N-15 and D enrichments relative to solar values, indicating that they likely originated in the ISM or the outskirts of the protoplanetary disk [3]. A recent study of samples from the Tagish Lake meteorite with varying levels of hydrothermal alteration suggest that nanoglobule abundance decreases with increasing hydrothermal alteration [5]. The aim of this study is to further document the morphologies of IOM from a range of primitive chondrites in order to determine any correlation of morphology with petrographic grade and chondrite class that could constrain the formation and/or alteration mechanisms.
    Keywords: Geophysics
    Type: JSC-CN-26020 , 43rd Lunar and Planetary Science Conference; Mar 19, 2012 - Mar 24, 2012; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-10
    Description: For over a decade, the oldest evidence for life on this planet has been microfossils in the 3.5 Ga Apex Chert in Western Australia. Recently, the biogenicity of these carbon-rich structures has been called into question through reanalysis of the local geology and reinterpretation of the original thin sections. Although initially described as a stratiform, bedded chert of siliceous clasts, the unit is now thought to be a brecciated hydrothermal vein chert. The high temperatures of a hydrothermal environment would probably have detrimental effects to early non-hyperthermophilic life, compared to that of a shallow sea. Conversely, a hydrothermal origin would suggest that if the microfossils were valid, they might have been hyperthermophilic. Apex Chert controversy. The Apex Chert microfossils were originally described as septate filaments composed of kerogen similar in morphology to Proterozoic and modern cyanobacteria. However new thin section analysis shows that these carbonaceous structures are not simple filaments. Many of the original microfossils are branched and have variable thickness when the plane of focus is changed. Hydrothermal alteration of organic remains has also been suggested for the creation of these strange morphologies. Another point of contention lies with the nature of the carbon material in these proposed microfossils. Kerogen is structurally amorphous, but transforms into well-ordered graphite under high pressures and temperatures. Raman spectrometry of the carbonaceous material in the proposed microfossils has been interpreted both as partially graphitized kerogen and amorphous graphite. However, these results are inconclusive, since Raman spectrometry cannot adequately discriminate between kerogen and disordered graphite. There are also opposing views for the origin of the carbon in the Apex Chert. The carbon would be biogenic if the proposed microfossils are indeed the remains of former living organisms. However, an inorganic Fischer- Tropsch-type synthesis is also a possible explanation for the formation of large-aggregate carbonaceous particles and could also account for the depletion of (13)C observed.
    Keywords: Geophysics
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The NASA Stardust mission successfully collected material from Comet 81P/Wild 2 [1], including authentic cometary grains [2]. X-ray absorption near-edge structure (XANES) spectroscopy analysis of these samples indicates the presence of oxygen-rich and nitrogen-rich organic materials, which contain a broad variety of functional groups (carbonyls, C=C bonds, aliphatic chains, amines, arnides, etc.) [3]. One component of these organics appears to contain very little aromatic carbon and bears some similarity to the organic residues produced by the irradiation of ices of interstellar/cometary composition, Stardust samples were also recently shown to contain glycine, the smallest biological amino acid [4]. Organic residues produced froth the UV irradiation of astrophysical ice analogs are already known to contain a large suite of organic molecules including amino acids [5-7], amphiphilic compounds (fatty acids) [8], and other complex species. This work presents a comparison between XANES spectra measured from organic residues formed in the laboratory with similar data of cometary samples collected by the Stardust mission
    Keywords: Astrophysics
    Type: 41st Lunar and Planetary Science Conference; Mar 01, 2010 - Mar 05, 2010; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Preliminary examination (PE) of samples returned from Comet 81P/Wild 2 by the NASA Stardust mission revealed a wide variety of carbonaceous samples [e.g. 1]. Carbonaceous matter is present as inclusions, rinds, and films in polyminerallic terminal particles [2-4], as carbon-rich particles along track walls [2, 5, 6], and as organic matter in aerogel around tracks [7, 8]. The organic chemistry of these samples ranges from purely aliphatic hydrocarbons to highly-aromatic material, often modified by various organic functional groups [2, 4, 5, 9-11]. Difficulty arises when interpreting the genesis of these carbonaceous samples, since contaminants could be introduced from the spacecraft [12], aerogel [1, 8], or during sample preparation. In addition, hypervelocity capture into aerogel may have heated cometary material in excess of 1000 C, which could have significantly altered the structure and chemistry of carbonaceous matter. Fortunately, much of this contamination or alteration can be identified through correlated microanalysis with transmission electron microscopy (TEM), scanning-transmission X-ray microscopy (STXM), and nanoscale secondary ion mass spectroscopy (SIMS).
    Keywords: Geophysics
    Type: JSC-CN-22719 , Lunar and Planetary Science Conference XLII (42nd); Mar 07, 2011 - Mar 11, 2011; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...