ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: The American journal of cardiology (ISSN 0002-9149); Volume 91; 4; 494-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Although all astronauts experience symptoms of orthostatic intolerance after short-duration spaceflight, only approximately 20% actually experience presyncope during upright posture on landing day. The presyncopal group is characterized by low vascular resistance before and after flight and low norepinephrine release during orthostatic stress on landing day. Our purpose was to determine the mechanisms of the differences between presyncopal and nonpresyncopal groups. We studied 23 astronauts 10 days before launch, on landing day, and 3 days after landing. We measured pressor responses to phenylephrine injections; norepinephrine release with tyramine injections; plasma volumes; resting plasma levels of chromogranin A (a marker of sympathetic nerve terminal release), endothelin, dihydroxyphenylglycol (DHPG, an intracellular metabolite of norepinephrine); and lymphocyte beta(2)-adrenergic receptors. We then measured hemodynamic and neurohumoral responses to upright tilt. Astronauts were separated into two groups according to their ability to complete 10 min of upright tilt on landing day. Compared with astronauts who were not presyncopal on landing day, presyncopal astronauts had 1). significantly smaller pressor responses to phenylephrine both before and after flight; 2). significantly smaller baseline norepinephrine, but significantly greater DHPG levels, on landing day; 3). significantly greater norepinephrine release with tyramine on landing day; and 4). significantly smaller norepinephrine release, but significantly greater epinephrine and arginine vasopressin release, with upright tilt on landing day. These data suggest that the etiology of orthostatic hypotension and presyncope after spaceflight includes low alpha(1)-adrenergic receptor responsiveness before flight and a remodeling of the central nervous system during spaceflight such that sympathetic responses to baroreceptor input become impaired.
    Keywords: Aerospace Medicine
    Type: American journal of physiology. Heart and circulatory physiology (ISSN 0363-6135); 286; 4; H1486-95
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: Space flight has a profound influence on the cardiovascular and autonomic nervous systems. Alterations in baroreflex function, plasma catecholamine concentrations, and arterial pressure regulation have been observed. Changes in autonomic regulation of cardiac function may lead to serious rhythm disturbances. In fact, ventricular tachycardia has been reported during long-duration space flight. The study aim was to determine the effects of space flight on cardiac conduction. Methods and Results: Electrocardiograms (ECGs) and serum electrolytes were obtained before and after short-duration (SD) (4-16 days) and long-duration (LD) (4-6 months) missions. Holter recordings were obtained from 3 different subjects before, during and after a 4-month mission. P-R, R-R, and Q-T intervals were measured manually in a random, blinded fashion and Bazzet's formula used to correct the Q-T interval (Q-Tc). Space flight had no clinically significant effect on electrolyte concentrations. P-R and RR intervals were decreased after SD flight (p〈0.05) and recovered 3 days after landing. In the same subjects, P-R and Q-Tc intervals were prolonged after LD flight (p〈0.01). Clinically significant Q-Tc prolongation (〉0.44 sec) occurred during the first month of flight and persisted until 3 days after landing (p〈0.01). Conclusions - Space flight alters cardiac conduction with more ominous changes seen with LD missions. Alterations in autonomic tone may explain ECG changes associated with space flight. Primary cardiac changes may also contribute to the conduction changes with LD flight. Q-Tc prolongation may predispose astronauts to ventricular arrhythmias during and after long-duration space flight.
    Keywords: Aerospace Medicine
    Type: JSC-CN-7371
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...