ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 1998-09-01
    Print ISSN: 0924-4247
    Digitale ISSN: 1873-3069
    Thema: Elektrotechnik, Elektronik, Nachrichtentechnik
    Publiziert von Elsevier
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-06-28
    Beschreibung: A fractional-step splitting scheme breaks the full Navier-Stokes equations into explicit and implicit portions amenable to the calculus of variations. Beginning with the functional forms of the Poisson and Helmholtz equations, we substitute finite expansion series for the dependent variables and derive the matrix equations for the unknown expansion coefficients. This method employs a new splitting scheme which differs from conventional three-step (nonlinear, pressure, viscous) schemes. The nonlinear step appears in the conventional, explicit manner, the difference occurs in the pressure step. Instead of solving for the pressure gradient using the nonlinear velocity, we add the viscous portion of the Navier-Stokes equation from the previous time step to the velocity before solving for the pressure gradient. By combining this 'predicted' pressure gradient with the nonlinear velocity in an explicit term, and the Crank-Nicholson method for the viscous terms, we develop a Helmholtz equation for the final velocity.
    Schlagwort(e): FLUID MECHANICS AND HEAT TRANSFER
    Materialart: NASA-TM-106109 , E-7758 , NAS 1.15:106109 , AVSCOM-TR-92-C-022 , AD-A266374
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-06-28
    Beschreibung: A procedure for computing the rotor temperature and stress distributions in a cooled radial turbine is considered. Existing codes for modeling the external mainstream flow and the internal cooling flow are used to compute boundary conditions for the heat transfer and stress analyses. An inviscid, quasi three-dimensional code computes the external free stream velocity. The external velocity is then used in a boundary layer analysis to compute the external heat transfer coefficients. Coolant temperatures are computed by a viscous one-dimensional internal flow code for the momentum and energy equation. These boundary conditions are input to a three-dimensional heat conduction code for calculation of rotor temperatures. The rotor stress distribution may be determined for the given thermal, pressure and centrifugal loading. The procedure is applied to a cooled radial turbine which will be tested at the NASA Lewis Research Center. Representative results from this case are included.
    Schlagwort(e): FLUID MECHANICS AND HEAT TRANSFER
    Materialart: ASME PAPER 88-GT-18
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-07-13
    Beschreibung: Finite-element analysis (FEA) modal results of 3C-SiC lateral resonant devices anchored to a Si substrate are presented as resonant frequency versus temperature. The suspended elements are etched from a 2 micron, 3C-SiC film grown at 1600 K on a 500 micron-thick, Si substrate. The analysis includes, temperature-dependent properties, shape change due to volume expansion with temperature, and thermal stress caused by differential thermal expansion of different materials. Two designs are considered: type I has anchor locations close to the geometric centroid and a small shuttle; type 11 has a large shuttle with anchors far from the centroid, The resonant frequency decreases approximately 3.5% over a 1000 K temperature increase for the type-I device, and behaves according to theory. The resonant frequency of the type-11 device decreases by 2% over the first 400 K, then rises slightly over the remaining 600 K. This device deviates from theory because of the high thermal stress induced in the beams. The thermal stress is caused by the differential thermal expansion of the suspended element relative to the substrate. The results show that the device geometry must be properly chosen if the resonant frequency of that device will be used to calculate the temperature coefficient of Young's modulus. These results apply only to resonators of one material on a substrate of a different material.
    Schlagwort(e): Chemistry and Materials (General)
    Materialart: Modeling and Simulation of Microsystems; Apr 19, 1999 - Apr 21, 1999; San Juan; Puerto Rico
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-07-13
    Beschreibung: Knowledge of ice conditions on important aircraft lift and control surfaces is critical for safe operation. These conditions can be determined with conventional ice-detection sensors, but these sensors are often expensive, require elaborate installation procedures, and interrupt the airflow. A micromachined, silicon-based, flush-mounted sensor which generates no internal heat has been designed, batch fabricated, packaged, and tested. The sensor is capable of distinguishing between an ice-covered and a clean surface. It employs a bulk micromachined wafer with a 7 micrometer-thick, boron-doped, silicon diaphragm which serves as one plate of a parallel-plate capacitor. This is bonded to a second silicon wafer which contains the fixed electrodes, one to drive the diaphragm by application of a voltage, the other to measure the deflection by a change in capacitance. The diaphragm sizes ranged from 1x1 mm to 3x3 mm, and the gap between parallel-plate capacitors is 2 micrometers. A 200 V d.c. was applied to the driving electrode which caused the capacitance to increase approximately 0.6pf, from a nominal capacitance of 0.6pf, when the surface was ice free. After the sensor was cooled below the freezing point of water, the same voltage range was applied to the drive electrode. The capacitance increased by the same amount. Then a drop of water was placed over the diaphragm and allowed to freeze. This created an approximately 2mm-thick ice layer. The applied 200V d.c. produced no change in capacitance, confirming that the diaphragm was locked to the ice layer. Since the sensor uses capacitive actuation, it uses very little power and is an ideal candidate for inclusion in a wireless sensing system.
    Schlagwort(e): Aircraft Instrumentation
    Materialart: NASA-TM-107432 , NAS 1.15:107432 , ARL-TR-1355 , E-10690 , Smart Structures and Materials; Mar 02, 1997 - Mar 06, 1997; San Diego, CA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-07-13
    Beschreibung: A finite-element analysis of possible silicon carbide (SIC) folded-beam, lateral-resonating accelerometers is presented. Results include stiffness coefficients, acceleration sensitivities, resonant frequency versus temperature, and proof-mass displacements due to centripetal acceleration of a blade-mounted sensor. The surface micromachined devices, which are similar to the Analog Devices Inc., (Norwood, MA) air-bag crash detector, are etched from 2-pm thick, 3C-SiC films grown at 1600 K using atmospheric pressure chemical vapor deposition (APCVD). The substrate is a 500 gm-thick, (100) silicon wafer. Polysilicon or silicon dioxide is used as a sacrificial layer. The finite element analysis includes temperature-dependent properties, shape change due to volume expansion, and thermal stress caused by differential thermal expansion of the materials. The finite-element results are compared to experimental results for a SiC device of similar, but not identical, geometry. Along with changes in mechanical design, blade-mounted sensors would require on-chip circuitry to cancel displacements due to centripetal acceleration and improve sensitivity and bandwidth. These findings may result in better accelerometer designs for this application.
    Schlagwort(e): Instrumentation and Photography
    Materialart: Gas Turbine and Aeroengine Technical Congress Exposition and User''s Symposium; Jun 07, 1999 - Jun 10, 1999; Indianapolis, IN; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-07-13
    Beschreibung: A procedure for computing the rotor temperature and stress distributions in a cooled radial turbine are considered. Existing codes for modeling the external mainstream flow and the internal cooling flow are used to compute boundary conditions for the heat transfer and stress analysis. The inviscid, quasi three dimensional code computes the external free stream velocity. The external velocity is then used in a boundary layer analysis to compute the external heat transfer coefficients. Coolant temperatures are computed by a viscous three dimensional internal flow cade for the momentum and energy equation. These boundary conditions are input to a three dimensional heat conduction code for the calculation of rotor temperatures. The rotor stress distribution may be determined for the given thermal, pressure and centrifugal loading. The procedure is applied to a cooled radial turbine which will be tested at the NASA Lewis Research Center. Representative results are given.
    Schlagwort(e): AIRCRAFT PROPULSION AND POWER
    Materialart: NASA-TM-101416 , E-4515 , NAS 1.15:101416 , AVSCOM-TR-88-C-037 , AD-A233526 , International Gas Turbine and Aeroengine Congress and Exposition; Jun 06, 1988 - Jun 09, 1988; Amsterdam; The Netherlands
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2019-07-10
    Beschreibung: An atmospheric pressure chemical vapor deposition (APCVD) reactor utilizing a unique vertical geometry which enables 3C-SiC films to be grown on two, 4-inch diameter Si wafers has been constructed. Contrary to expectations, 3C-SiC films grown in this reactor are thickest at the downstream end of the substrates. To better understand the reason for the thickness distribution on the wafers, an axisymmetric finite-element model of the gas flow in the reactor was constructed. The model uses the ANSYS53 Flowtran package and includes compressible and temperature-dependent fluid properties in laminar or turbulent flow. It does not include reaction chemistry or unsteady flow. The ANSYS53 results predict that the cool, inlet fluid falls through the inlet pipe and the warm, diffuser region like a jet. This jet impinges on top of the susceptor and gets diverted to the reactor side walls, where it flows to the bottom of the reactor, turns, and slowly rises along the face of the susceptor. This may explain why the SiC films are thickest at the downstream side of the wafers, as gas containing fresh reactants first passes over this region. Modeling results are presented for both one atmosphere and one half atmosphere reactor pressure.
    Schlagwort(e): Nonmetallic Materials
    Materialart: Journal of Chemical Vapor Deposition
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2019-07-13
    Beschreibung: Microelectromechanical systems (MEMS) embody the integration of sensors, actuators, and electronics on a single substrate using integrated circuit fabrication techniques and compatible micromachining processes. Silicon and its derivatives form the material base for the MEMS technology. MEMS devices, including micro-sensors and micro-actuators, are attractive because they can be made small (characteristic dimension about microns), be produced in large numbers with uniform performance, include electronics for high performance and sophisticated functionality, and be inexpensive. MEMS pressure sensors, wall-shear-stress sensors, and micromachined hot-wires are nearing application in aeronautics. MEMS actuators face a tougher challenge since they have to be scaled (up) to the physical phenomena that are being controlled. MEMS actuators are proposed, for example, for controlling the small structures in a turbulent boundary layer, for aircraft control, for cooling, and for mixing enhancement. Data acquisition or control logistics require integration of electronics along with the transducer elements with appropriate consideration of analog-to-digital conversion, multiplexing, and telemetry. Altogether, MEMS technology offers exciting opportunities for aerodynamics applications both in wind tunnels and in flight
    Schlagwort(e): Aircraft Instrumentation
    Materialart: NASA-TM-107320 , NAS 1.15:107320 , ARL-TR-1113 , E-10417 , Aerospace Sciences Meeting and Exhibit; Jan 15, 1996 - Jan 18, 1996; Reno, NV; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...