ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2020-05-25
    Description: In March 2017, measurements of downward global irradiance of ultraviolet (UV) radiation were started with a multichannel GUV-2511 radiometer in Marambio, Antarctica (64.23∘ S; 56.62∘ W), by the Finnish Meteorological Institute (FMI) in collaboration with the Servicio Meteorológico Nacional (SMN). These measurements were analysed and the results were compared to previous measurements performed at the same site with the radiometer of the Antarctic NILU-UV network during 2000–2008 and to data from five stations across Antarctica. In 2017/2018 the monthly-average erythemal daily doses from October to January were lower than those averaged over 2000–2008 with differences from 2.3 % to 25.5 %. In 2017/2018 the average daily erythemal dose from September to March was 1.88 kJ m−2, while in 2018/2019 it was 23 % larger (2.37 kJ m−2). Also at several other stations in Antarctica the UV radiation levels in 2017/2018 were below average. The maximum UV indices (UVI) in Marambio were 6.2 and 9.5 in 2017/2018 and 2018/2019, respectively, whereas during years 2000–2008 the maximum was 12. Cloud cover, the strength of the polar vortex and the stratospheric ozone depletion are the primary factors that influence the surface UV radiation levels in Marambio. The lower UV irradiance values in 2017/2018 are explained by the high ozone concentrations in November, February and for a large part of October. The role of cloud cover was clearly seen in December, and to a lesser extent in October and November, when cloud cover qualitatively explains changes which could not be ascribed to changes in total ozone column (TOC). In this study, the roles of aerosols and albedo are of minor influence because the variation of these factors in Marambio was small from one year to the other. The largest variations of UV irradiance occur during spring and early summer when noon solar zenith angle (SZA) is low and the stratospheric ozone concentration is at a minimum (the so-called ozone hole). In 2017/2018, coincident low total ozone column and low cloudiness near solar noon did not occur, and no extreme UV indices were measured.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-11
    Description: This study examines the adequacy of the existing Brewer network to supplement other networks from the ground and space to detect SO2 plumes of volcanic origin. It was found that large volcanic eruptions of the last decade in the Northern Hemisphere have a positive columnar SO2 signal seen by the Brewer instruments located under the plume. It is shown that a few days after the eruption the Brewer instrument is capable of detecting significant columnar SO2 increases, exceeding on average 2 DU relative to an unperturbed pre-volcanic 10-day baseline, with a mean close to 0 and σ = 0.46, as calculated from the 32 Brewer stations under study. Intercomparisons with independent measurements from the ground and space as well as theoretical calculations corroborate the capability of the Brewer network to detect volcanic plumes. For instance, the comparison with OMI (Ozone Monitoring Instrument) and GOME-2 (Global Ozone Monitoring Experiment-2) SO2 space-borne retrievals shows statistically significant agreement between the Brewer network data and the collocated satellite overpasses in the case of the Kasatochi eruption. Unfortunately, due to sparsity of satellite data, the significant positive departures seen in the Brewer and other ground networks following the Eyjafjallajökull, Bárðarbunga and Nabro eruptions could not be statistically confirmed by the data from satellite overpasses. A model exercise from the MACC (Monitoring Atmospheric Composition and Climate) project shows that the large increases in SO2 over Europe following the Bárðarbunga eruption in Iceland were not caused by local pollution sources or ship emissions but were clearly linked to the volcanic eruption. Sulfur dioxide positive departures in Europe following Bárðarbunga could be traced by other networks from the free troposphere down to the surface (AirBase (European air quality database) and EARLINET (European Aerosol Research Lidar Network)). We propose that by combining Brewer data with that from other networks and satellites, a useful tool aided by trajectory analyses and modelling could be created which can also be used to forecast high SO2 values both at ground level and in air flight corridors following future eruptions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-03-20
    Description: Aerosols play an important role in key atmospheric processes and feature high spatial and temporal variabilities. This has motivated scientific interest in the development of networks capable of measuring aerosol properties over large geographical areas in near-real time. In this work we present and discuss results of an aerosol optical depth (AOD) algorithm applied to instruments of the European Brewer Network. This network is comprised of close to 50 Brewer spectrophotometers, mostly located in Europe and adjacent areas, although instruments operating at, for example, South America and Australia are also members. Although we only show results for instruments calibrated by the Regional Brewer Calibration Center for Europe, the implementation of the AOD algorithm described is intended to be used by the whole network in the future. Using data from the Brewer intercomparison campaigns in the years 2013 and 2015, and the period in between, plus comparisons with Cimel sun photometers and UVPFR instruments, we check the precision, stability, and uncertainty of the Brewer AOD in the ultraviolet range from 300 to 320 nm. Our results show a precision better than 0.01, an uncertainty of less than 0.05, and, for well-maintained instruments, a stability similar to that of the ozone measurements. We also discuss future improvements to our algorithm with respect to the input data, their processing, and the characterization of the Brewer instruments for the measurement of AOD.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-07-04
    Description: This paper demonstrates that SO2 columnar amounts have significantly increased following the five largest volcanic eruptions of the past decade in the Northern Hemisphere. A strong positive signal was detected by all the existing networks either ground based (Brewer, EARLINET, AirBase) or from satellites (OMI, GOME-2). The study particularly examines the adequacy of the existing Brewer network to detect SO2 plumes of volcanic origin in comparison to other networks and satellite platforms. The comparison with OMI and GOME-2 SO2 space-borne retrievals shows statistically significant agreement between the Brewer network data and the collocated satellite overpasses. It is shown that the Brewer instrument is capable of detecting significant columnar SO2 increases following large volcanic eruptions, when SO2 levels rise well above the instrumental noise of daily observations, estimated to be of the order of 2 DU. A model exercise from the MACC project shows that the large increases of SO2 over Europe following the Bárðarbunga eruption in Iceland were not caused by local sources or ship emissions but are clearly linked to the eruption. We propose that by combining Brewer data with that from other networks and satellites, a useful tool aided by trajectory analyses and modeling could be created which can be used to forecast high SO2 values both at ground level and in air flight corridors following future eruptions.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-11-06
    Description: The high spatial and temporal variability of aerosols make networks capable of measuring their properties in near real time of high scientific interest. In this work we present and discuss results of an aerosol optical depth algorithm to be used in the European Brewer Network, which provides data in near real time of more than 30 spectrophotometers located from Tamanrasset (Algeria) to Kangerlussuaq (Greenland). Using data from the Brewer Intercomparison Campaigns in the years 2013 and 2015, and the period in between, plus comparisons with Cimel sunphotometers and UVPFR instruments, we check the precision, stability, and uncertainty of the Brewer AOD in the ultraviolet range from 300 to 320 nm. Our results show a precision better than 0.01, an uncertainty of less than 0.05, and a stability similar to that of the ozone measurements for well-maintained instruments. We also discuss future improvements to our algorithm with respect to the input data, their processing, and the characterization of the Brewer instruments for the measurement of aerosols.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-12-21
    Description: The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor (S5P) satellite was launched on 13 October 2017 to provide the atmospheric composition for atmosphere and climate research. The S5P is a Sun-synchronous polar-orbiting satellite providing global daily coverage. The TROPOMI swath is 2600 km wide, and the ground resolution for most data products is 7.2×3.5 km2 (5.6×3.5 km2 since 6 August 2019) at nadir. The Finnish Meteorological Institute (FMI) is responsible for the development of the TROPOMI UV algorithm and the processing of the TROPOMI surface ultraviolet (UV) radiation product which includes 36 UV parameters in total. Ground-based data from 25 sites located in arctic, subarctic, temperate, equatorial and Antarctic areas were used for validation of the TROPOMI overpass irradiance at 305, 310, 324 and 380 nm, overpass erythemally weighted dose rate/UV index, and erythemally weighted daily dose for the period from 1 January 2018 to 31 August 2019. The validation results showed that for most sites 60 %–80 % of TROPOMI data was within ±20 % of ground-based data for snow-free surface conditions. The median relative differences to ground-based measurements of TROPOMI snow-free surface daily doses were within ±10 % and ±5 % at two-thirds and at half of the sites, respectively. At several sites more than 90 % of cloud-free TROPOMI data was within ±20 % of ground-based measurements. Generally median relative differences between TROPOMI data and ground-based measurements were a little biased towards negative values (i.e. satellite data 
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Bulletin of the American Meteorological Society, American Meteorological Society, 104(9), pp. s1-s10, ISSN: 0003-0007
    Publication Date: 2024-05-29
    Description: 〈jats:title〉Abstract〈/jats:title〉 〈jats:p〉—J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES〈/jats:p〉 〈jats:p〉Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases.〈/jats:p〉 〈jats:p〉In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.〈/jats:p〉 〈jats:p〉Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record.〈/jats:p〉 〈jats:p〉While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.〈/jats:p〉 〈jats:p〉The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.〈/jats:p〉 〈jats:p〉In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.〈/jats:p〉 〈jats:p〉In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.〈/jats:p〉 〈jats:p〉Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded.〈/jats:p〉 〈jats:p〉A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported.〈/jats:p〉 〈jats:p〉As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.〈/jats:p〉 〈jats:p〉In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.〈/jats:p〉 〈jats:p〉On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...