ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Fatigue & fracture of engineering materials & structures 20 (1997), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract— The effect of short periods of mixed-mode overloading on the environmental hydrogen induced fracture life of 0.42%C, 0.87%Cr, 0.21%Mo steel has been studied. Tests were performed in 0.5 mol/L H2SO4 solution under continuous hydrogen charging conditions using a weight loading system. Experimental results show that the application of mixed-mode overloads can cause more severe crack growth retardation than those of mode I. Possible mechanisms responsible for the retardation of subsequent crack growth, such as crack deflection, plasticity-induced residual compression stresses, dislocation shielding and overload damage, are examined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Fatigue & fracture of engineering materials & structures 19 (1996), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A model based on micro-mechanical concepts has been developed for predicting fatigue crack growth in titanium alloy matrix composites. In terms of the model, the crack system is composed of three zones: the crack, the plastic zone and the fibre. Crack tip plasticity is constrained by the fibres and remains so until certain conditions are met. The condition for crack propagation is that fibre constraint is overcome when the stress at the location of the fibre ahead of the crack tip attains a critical level required for debonding. Crack tip plasticity then increases and the crack is able to propagate round the fibre. The debonding stress is calculated using the shear lag model from values of interfacial shear strength and embedded fibre length published in the literature.If the fibres in the crack wake remain unbroken, friction stresses on the crack flanks are generated, as a result of the matrix sliding along the fibres. The friction stresses (known as the bridging effect) shield the crack tip from the remote stress, reducing the crack growth relative to that of the matrix alone. The bridging stress is calculated by adding together the friction stresses, at each fibre row bridging the crack, which are assumed to be a function of crack opening displacement and sliding distance at each row. The friction stresses at each fibre row will increase as the crack propagates further until a critical level for fibre failure is reached. Fibre failure is modelled through Weibull statistics and published experimental results. Fibre failure will reduce the bridging effect and increase the crack propagation rate.Calculated fatigue lives and crack propagation rates are compared with experimental results for three different materials (32% SCS6/Ti-15-3, 32% and 38% SCS6/Ti-6-4) subjected to mode I fatigue loading. The good agreement shown by these comparisons demonstrates the applicability of the model to predict the fatigue damage in Ti-based MMCs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Fatigue & fracture of engineering materials & structures 19 (1996), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A study has been made of the effect of short periods of overloading on the environmental hydrogen induced fracture (HIF) life of 0.42% C, 0.87% Cr, 0.2% Mo steel tested in a 0.5 mol/L H2SO4 solution under continuously hydrogen charging conditions. Experimental results showed that when the overloading was applied during the early or middle stage of the test, the HIF life was longer than that obtained at constant stress; however, if the overloading was applied during the later stages, a shortened HIF life was obtained. It is important to note that the processes of HIF (including hydrogen absorption, transportation and accumulation, crack initiation and propagation) depend not only on the electrochemical condition, but also on both stress-strain state and stress history. In view of the above considerations, effects of plasticity induced closure, residual compression stress, dislocation shielding and overload damage, which control HIF life, are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Fatigue & fracture of engineering materials & structures 19 (1996), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract— The effect of variable amplitude loading on the initiation and propagation of fatigue cracks from shot peened and unpeened surfaces was investigated. The results confirm the well-known effect of shot peening, i.e. the increase of fatigue life in comparative tests under constant amplitude loading. Shot peening increases the time to crack initiation and also decreases crack propagation rate, particularly in the earlier stages of growth.Variable amplitude tests were of various kinds: (i) half-life at one stress level, followed by testing at the second stress level until failure, (ii) sequence loading at two stress levels, and (iii) a different number of overload cycles (1, 10, 100) following a given number of base amplitude cycles.The results of the two amplitude tests showed different behaviour depending on whether the first half-life cycles were of higher or lower stress levels. These results are explained in terms of crack density and crack coalescence. The extent of damage accumulation during block loading depends on the stress levels employed. The benefits of shot peening are compromised by high stress levels.Results from the overload tests showed that the interpretation of results is not straight forward. A combination of the theories of crack retardation and microstructural-fracture mechanics seems a necessary prerequisite in an explanation of the resultant behaviour.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Fatigue & fracture of engineering materials & structures 18 (1995), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Fully reversed uniaxial fatigue tests were performed on aluminium magnesium alloy Al 5754 with four different grain sizes in order that the effect of grain size on fatigue crack growth could be examined. Surface cracks were monitored by a plastic replication technique. Fatigue strength was shown to improve with a decrease in grain size. The endurance stress is a function of the inverse square root of the grain size and is described empiricdty by a Hall-Petch type relation. The effect of grain size on fatigue crack growth is most significant when the crack length is of the order of the microstructure. Fluctuations in the growth rate of microstructurally short cracks are most marked in a fine grained microstructure and may be related to the need to transfer slip to adjacent grains. Crack path deviation is greatest in the coarsest grained microstructure and SEM fractography reveals a more pronounced crack surface roughness in the coarser grained alloy than in the finer grained alloy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Fatigue & fracture of engineering materials & structures 18 (1995), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The tensile yield and flow stresses of aluminium, A1-2.63Mg alloy and A1-2.07Li alloy at room temperature are shown to depend on the inverse square root of the polycrystal grain size and are described empirically by the Hall-Petch relation. The same relation describes the flow stress-grain size dependence for A1-2.07Li alloy at temperatures ranging from - 196°C to 400°C. The strain hardening in the friction stress of each material at 20°C is independent of the grain size, is approximately parabolic and is greatest for the precipitation strengthened A1-2.07Li alloy. The grain size contribution to the tensile flow stress is dependent on both the tensile strain and composition. The friction stress, σ0, and slip band stress intensity parameter, kε, at yield, ky, are both dependent on temperature. Low temperature suppresses dislocation annihilation and recovery processes, leading to planar pile-ups at grain boundaries and a hardening that is linear with strain. Weak hardening is observed at 250°C and 400°C due to extensive annihilation and recovery. The value of kε, at all temperatures falls following initial yielding with the generation of freshly unlocked sources.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Fatigue & fracture of engineering materials & structures 17 (1994), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Hydrogen induced cracking (HIC) initiation sites and their correlation with the critical stress intensity factors of hydrogen charged specimens were studied under combined I/II mode loading. Two series of tests, is. constant load (CL) tests and slow strain rate (SSR) tests, were carried out. Experimental results showed that in CL tests, irrespective of the ratio KIJKl, the HIC initiation sites always correspond to the point of maximum hydrostatic stress; which is located some distance ahead of the notch tip. However, for SSRT tests, when K11/K1〉 1, HIC started at the notch tip which corresponds to the point of maximum equivalent plastic strain. When K11/K1〈1 in SSR tests, HIC occurred initially some distance ahead of the notch tip.The relationship between the critical stress intensity factor for HIC and K11/K1 was shown to be different for the two types of test. Multiple effects of stress and strain on hydrogen redistribution and hence on HIC initiation sites, as well as critical stress intensity factors, are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Fatigue & fracture of engineering materials & structures 26 (2003), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The propagation of a fatigue crack from an initial defect of the same order as the scale of the microstructure through to failure has been modelled using a representation of fatigue damage according to the Navarro–de los Rios (N–R) model. The fatigue processes are presented in the form of a fatigue damage map (FDM). It is shown how the map can be used to create a traditional S–N curve and to provide information suitable for estimating fatigue lifetimes under damage tolerant conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Fatigue & fracture of engineering materials & structures 23 (2000), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Neuber’s rule and the notch equivalent crack length concept were utilized to predict the effect of notches on the fracture strength and fatigue limit of unidirectional metal matrix composites. For the examination of the fracture strength, the strain of the notch is compared to that required for debonding or fracture of the fibres. The notch effect under fatigue loading is determined by examining the ability of the notch to achieve premature debonding.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Fatigue & fracture of engineering materials & structures 23 (2000), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Microstructural fracture mechanics concepts are used to develop a model to incorporate shot-peening effects into crack propagation laws and fatigue life predictions. Shot peening produces a residual stress which resists opening of the crack and also produces a work-hardened layer within which the flow stress is raised. The model takes account of these effects to give an accurate prediction of the increase in fatigue life. The model was also used to derive the conditions for crack arrest, and the results are presented in the form of a fatigue damage map (FDM). The FDM can be used for the determination of safe loads in durability and maintainability analyses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...