ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Two short (〈 2 s) γ-ray bursts (GRBs) have recently been localized and fading afterglow counterparts detected. The combination of these two results left unclear the nature of the host galaxies of the bursts, because one was a star-forming dwarf, while the other was probably an ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Menasha, Wis. : Periodicals Archive Online (PAO)
    The Accounting Review. 31:2 (1956:Apr.) 227 
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-05-28
    Description: We investigate the prospects for the capture of the proposed Planet 9 from other stars in the Sun's birth cluster. Any capture scenario must satisfy three conditions: the encounter must be more distant than ~150 au to avoid perturbing the Kuiper belt; the other star must have a wide-orbit planet ( a 100 au); the planet must be captured on to an appropriate orbit to sculpt the orbital distribution of wide-orbit Solar system bodies. Here we use N -body simulations to show that these criteria may be simultaneously satisfied. In a few per cent of slow close encounters in a cluster, bodies are captured on to heliocentric, Planet 9-like orbits. During the ~100 Myr cluster phase, many stars are likely to host planets on highly eccentric orbits with apastron distances beyond 100 au if Neptune-sized planets are common and susceptible to planet–planet scattering. While the existence of Planet 9 remains unproven, we consider capture from one of the Sun's young brethren a plausible route to explain such an object's orbit. Capture appears to predict a large population of trans-Neptunian objects (TNOs) whose orbits are aligned with the captured planet, and we propose that different formation mechanisms will be distinguishable based on their imprint on the distribution of TNOs.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-04-10
    Description: Instabilities in planetary systems can result in the ejection of planets from their host system, resulting in free-floating planets (FFPs). If this occurs in a star cluster, the FFP may remain bound to the star cluster for some time and interact with the other cluster members until it is ejected. Here, we use N -body simulations to characterize close star–planet and planet–planet encounters and the dynamical fate of the FFP population in star clusters containing 500–2000 single or binary star members. We find that FFPs ejected from their planetary system at low velocities typically leave the star cluster 40 per cent earlier than their host stars, and experience tens of close (〈1000 au) encounters with other stars and planets before they escape. The fraction of FFPs that experiences a close encounter depends on both the stellar density and the initial velocity distribution of the FFPs. Approximately half of the close encounters occur within the first 30 Myr, and only 10 per cent occur after 100 Myr. The periastron velocity distribution for all encounters is well described by a modified Maxwell–Bolzmann distribution, and the periastron distance distribution is linear over almost the entire range of distances considered, and flattens off for very close encounters due to strong gravitational focusing. Close encounters with FFPs can perturb existing planetary systems and their debris structures, and they can result in re-capture of FFPs. In addition, these FFP populations may be observed in young star clusters in imaging surveys; a comparison between observations and dynamical predictions may provide clues to the early phases of stellar and planetary dynamics in star clusters.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: 〈p〉Many white dwarf stars show signs of having accreted smaller bodies, implying that they may host planetary systems. A small number of these systems contain gaseous debris discs, visible through emission lines. We report a stable 123.4-minute periodic variation in the strength and shape of the Ca 〈scp〉ii〈/scp〉 emission line profiles originating from the debris disc around the white dwarf SDSS J122859.93+104032.9. We interpret this short-period signal as the signature of a solid-body planetesimal held together by its internal strength.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-12-06
    Description: We use N -body simulations of star cluster evolution to explore the hypothesis that short-lived radioactive isotopes found in meteorites, such as 26 Al, were delivered to the Sun's protoplanetary disc from a supernova at the epoch of Solar system formation. We cover a range of star cluster formation parameter space and model both clusters with primordial substructure and those with smooth profiles. We also adopt different initial virial ratios – from cool, collapsing clusters to warm, expanding associations. In each cluster, we place the same stellar population; the clusters each have 2100 stars and contain one massive 25 M star which is expected to explode as a supernova at about 6.6 Myr. We determine the number of solar (G)-type stars that are within 0.1–0.3 pc of the 25 M star at the time of the supernova, which is the distance required to enrich the protoplanetary disc with the 26 Al abundances found in meteorites. We then determine how many of these G-dwarfs are unperturbed ‘singletons’; stars which are never in close binaries, nor suffer sub-100 au encounters, and which also do not suffer strong dynamical perturbations. The evolution of a suite of 20 initially identical clusters is highly stochastic, with the supernova enriching over 10 G-dwarfs in some clusters, and none at all in others. Typically, only ~25 per cent of clusters contain enriched, unperturbed singletons, and usually only one to two per cluster (from a total of 96 G-dwarfs in each cluster). The initial conditions for star formation do not strongly affect the results, although a higher fraction of supervirial (expanding) clusters would contain enriched G-dwarfs if the supernova occurred earlier than 6.6 Myr. If we sum together simulations with identical initial conditions, then ~1 per cent of all G-dwarfs in our simulations are enriched, unperturbed singletons.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-09-11
    Description: We present deep Very Large Telescope and Hubble Space Telescope observations of the nearest examples of Ca-rich ‘gap’ transients – rapidly evolving transient events, with a luminosity intermediate between novae and supernovae. These sources are frequently found at large galactocentric offsets, and their progenitors remain mysterious. Our observations find no convincing underlying quiescent sources coincident with the locations of these transients, allowing us to rule out a number of potential progenitor systems. The presence of surviving massive-star binary companions (or other cluster members) is ruled out, providing an independent rejection of a massive star origin for these events. Dwarf satellite galaxies are disfavoured unless one invokes as yet unknown conditions that would be extremely favourable for their production in the lowest mass systems. Our limits also probe the majority of the globular cluster luminosity function, ruling out the presence of an underlying globular cluster population at high significance, and thus the possibility that they are created via dynamical interactions in dense globular cluster cores. Given the lack of underlying systems, previous progenitor suggestions have difficulty reproducing the remote locations of these transients, even when considering solely halo-borne progenitors. Our preferred scenario is that Ca-rich transients are high-velocity, kicked systems, exploding at large distances from their natal site. Coupled with a long-lived progenitor system post-kick, this naturally explains the lack of association these transients have with their host stellar light, and the extreme host-offsets exhibited. Neutron star–white dwarf mergers may be a promising progenitor system in this scenario.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-03-18
    Description: Calcium-rich supernovae (SNe) represent a significant challenge for our understanding of the fates of stellar systems. They are less luminous than other SN types and they evolve more rapidly to reveal nebular spectra dominated by strong calcium lines with weak or absent signatures of other intermediate- and iron-group elements, which are seen in other SNe. Strikingly, their explosion sites also mark them out as distinct from other SN types. Their galactocentric offset distribution is strongly skewed to very large offsets (~1/3 are offset 〉20 kpc), meaning they do not trace the stellar light of their hosts. Many of the suggestions to explain this extreme offset distribution have invoked the necessity for unusual formation sites such as globular clusters or dwarf satellite galaxies, which are therefore difficult to detect. Building on previous work attempting to detect host systems of nearby Ca-rich SNe, we here present Hubble Space Telescope imaging of five members of the class – three exhibiting large offsets and two coincident with the disc of their hosts. We find no underlying sources at the explosion sites of any of our sample. Combining with previous work, the lack of a host system now appears to be a ubiquitous feature amongst Ca-rich SNe. In this case the offset distribution is most readily explained as a signature of high-velocity progenitor systems that have travelled significant distances before exploding.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-06-30
    Description: We follow the near radial infall of a prolate cloud on to a 4  x 10 6 M supermassive black hole in the Galactic Centre using smoothed particle hydrodynamics. We show that a prolate cloud oriented perpendicular to its orbital plane naturally produces a spread in angular momenta in the gas which can translate into misaligned discs as is seen in the young stars orbiting Sagittarius A*. A turbulent or otherwise highly structured cloud is necessary to avoid cancelling too much angular momentum through shocks at closest approach. Our standard model of a 2  x 10 4 M gas cloud brought about the formation of a disc within 0.3 pc from the black hole and a larger, misaligned streamer at 0.5 pc. A total of 1.5  x 10 4 M of gas formed these structures. Our exploration of the simulation parameter space showed that when star formation occurred, it resulted in top-heavy initial mass functions with stars on eccentric orbits with semi-major axes 0.02–0.3 pc and inclinations following the gas discs and streamers. We suggest that the single event of an infalling prolate cloud can explain the occurrence of multiple misaligned discs of young stars.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...