ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Years
  • 1
    Publication Date: 2001-12-10
    Description: Axisymmetric vortex core flows, in unconfined and confined geometries, are examined using a quasi-one-dimensional analysis. The goal is to provide a simple unified view of the topic which gives insight into the key physical features, and the overall parametric dependence, of the core area evolution due to boundary geometry or far-field pressure variation. The analysis yields conditions under which waves on vortex cores propagate only downstream (supercritical flow) or both upstream and downstream (subcritical flow), delineates the conditions for a Kelvin-Helmholtz instability arising from the difference in core and outer flow axial velocities, and illustrates the basic mechanism for suppression of this instability due to the presence of swirl. Analytic solutions are derived for steady smoothly, varying vortex cores in unconfined geometries with specified far-field pressure and in confined flows with specified bounding area variation. For unconfined vortex cores, a maximum far-field pressure rise exists above which the vortex cannot remain smoothly varying; this coincides with locally critical conditions (axial velocity equal to wave speed) in terms of wave propagation. Comparison with axisymmetric Navier-Stokes simulations and experimental results indicate that this maximum correlates with the appearance of vortex breakdown and marked core area increase in the simulations and experiments. For confined flows, the core stagnation pressure defect relative to the outer flow is found to be the dominant factor in determining conditions for large increases in core size. Comparisons with axisymmetric Navier-Stokes computations show that the analysis captures qualitatively, and in many instances, quantitatively, the evolution of vortex cores in confined geometries. Finally, a strong analogy with quasi-one-dimensional compressible flow is demonstrated by construction of continuous and discontinuous flows as a function of imposed downstream core edge pressure.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: The modeling of vortical flows is a continuing requirement for the design and analysis of flight vehicles. In this paper, the computation of leading edge vortices is considered. The solution of the laminar, thin-layer Navier-Stokes equations for a transonic delta wing is presented as a representative example. Issues relating to the visualization of the results are discussed, and illustrations using the newly developed software VISUAL3 on a Stardent graphics supercomputer are included.
    Keywords: AERODYNAMICS
    Type: Computing Systems in Engineering (ISSN 0956-0521); 1; 4-Feb
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...