ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and computational fluid dynamics 3 (1992), S. 253-265 
    ISSN: 1432-2250
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract In this paper we investigate numerical solutions for the growth rates of Görtler vortices in a compressible three-dimensional flow in the inviscid limit of a large Görtler number. We look at a range of Mach numbers and find that there are three different types of behaviour for the mode growth-rate, corresponding to whether the flow is incompressible, has a Mach number small enough so that temperature-adjustment-layer modes do not appear in the two-dimensional case, or has a Mach number large enough so that they do. We find that it takes a considerably greater crossflow to destroy the Görtler vortices for moderate Mach numbers than it did in the incompressible case looked at by Bassom and Hall (1991). From this we believe that Görtler vortices may well still be a cause of transition for many practical compressible inviscid three-dimensional flows.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1992-01-01
    Print ISSN: 0935-4964
    Electronic ISSN: 1432-2250
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1993-01-01
    Print ISSN: 0272-4960
    Electronic ISSN: 1464-3634
    Topics: Mathematics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1997-05-15
    Print ISSN: 1364-503X
    Electronic ISSN: 1471-2962
    Topics: Mathematics , Physics , Technology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: The nonlinear development of inviscid Gortler vortices in a three-dimensional boundary layer is considered. We do not follow the classical approach of weakly nonlinear stability problems and consider a mode which has just become unstable. Instead we extend the method of Blackaby, Dando, and Hall (1992), which considered the closely related nonlinear development of disturbances in stratified shear flows. The Gortler modes we consider are initially fast growing and we assume, following others, that boundary-layer spreading results in them evolving in a linear fashion until they reach a stage where their amplitudes are large enough and their growth rates have diminished sufficiently so that amplitude equations can be derived using weakly nonlinear and non-equilibrium critical-layer theories. From the work of Blackaby, Dando and Hall (1993) is apparent, given the range of parameters for the Gortler problem, that there are three possible nonlinear integro-differential evolution equations for the disturbance amplitude. These are a cubic due to viscous effects, a cubic which corresponds to the novel mechanism investigated in this previous paper, and a quintic. In this paper we shall concentrate on the two cubic integro-differential equations and in particular, on the one due to the novel mechanism as this will be the first to affect a disturbance. It is found that the consideration of a spatial evolution problem as opposed to temporal (as was considered in Blackaby, Dando, and Hall, 1992) causes a number of significant changes to the evolution equations.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-CR-198222 , NAS 1.26:198222 , ICASE-95-68 , NIPS-95-06128
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: The problem of wavenumber selection for fully nonlinear, small-wavelength Goertler vortices in a curved channel flow is considered. These types of Goertler vortices were first considered by Hall & Lakin (1988) for an external boundary layer flow. They proved particularly amenable to asymptotic description, it was possible to consider vortices large enough so that the mean flow correction driven by them is as large as the basic state, and this prompted the authors to consider them in a curved channel flow as an initial application of the phase-equation approach to Goertler vortices. This involves the assumption that the phase variable of these Goertler vortices varies on slow spanwise and time scales, then an analysis of both inside and outside the core region, to which vortex activity is restricted, leads to a system of partial differential equations which can be solved numerically for the wavenumber. The authors consider in particular the effect on the wavenumber of the outer channel wall varying on the same slow spanwise scale as the phase variable.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-CR-195063 , NAS 1.26:195063 , ICASE-95-21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: The nonlinear development of disturbances in stratified shear flows (having a local Richardson number of value less than one quarter) is considered. Such modes are initially fast growing but, like related studies, we assume that the viscous, non-parallel spreading of the shear layer results in them evolving in a linear fashion until they reach a position where their amplitudes are large enough and their growth rates have diminished sufficiently so that amplitude equations can be derived using weakly nonlinear and non-equilibrium critical-layer theories. Four different basic integro-differential amplitude equations are possible, including one due to a novel mechanism; the relevant choice of amplitude equation, at a particular instance, being dependent on the relative sizes of the disturbance amplitude, the growth rate of the disturbance, its wavenumber, and the viscosity of the fluid. This richness of choice of possible nonlinearities arises mathematically from the indicial Frobenius roots of the governing linear inviscid equation (the Taylor-Goldstein equation) not, in general, differing by an integer. The initial nonlinear evolution of a mode will be governed by an integro-differential amplitude equations with a cubic nonlinearity but the resulting significant increase in the size of the disturbance's amplitude leads on to the next stage of the evolution process where the evolution of the mode is governed by an integro-differential amplitude equations with a quintic nonlinearity. Continued growth of the disturbance amplitude is expected during this stage, resulting in the effects of nonlinearity spreading to outside the critical level, by which time the flow has become fully nonlinear.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-CR-191492 , NAS 1.26:191492 , ICASE-93-36 , AD-A269007
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: The growth rate is studied of Goertler vortices in a compressible flow in the inviscid limit of large Goertler number. Numerical solutions are obtained for 0(1) wavenumbers. The further limits of large Mach number and large wavenumber with 0(1) Mach number are considered. It is shown that two different types of disturbance modes can appear in this problem. The first is a wall layer mode, so named as it has its eigenfunctions trapped in a thin layer away from the wall and termed a trapped layer mode for large wavenumbers and an adjustment layer mode for large Mach numbers, since then this mode has its eigenfunctions concentrated in the temperature adjustment layer. The near crossing of the modes which occurs in each of the limits mentioned is investigated.
    Keywords: AERODYNAMICS
    Type: NASA-CR-187600 , NAS 1.26:187600 , ICASE-91-54 , AD-A240186
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...