ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    ISSN: 1573-6830
    Keywords: Parkinson's disease ; catecholamines ; oxidative metabolites ; phosphorylation ; DNA damage ; apoptosis ; p53
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract 1. The pathogenesis of the selective degeneration of the dopaminergic neurons in Parkinson's disease is still enigmatic. Recently we have shown that dopamine can induce apoptosis in postmitotic neuronal cells, as well as in other cellular systems, thus suggesting a role for this endogenous neurotransmitter and associated oxidative stress in the neuronal death process. 2. Dopamine has been shown to be capable of inducing DNA damage through its oxidative metabolites. p53 is a transcription factor that has a major role in determining cell fate in response to DNA damage. We therefore examined the possible correlation between dopamine-triggered apoptosis, DNA damage and levels of total phosphorylated p53 protein in cultured mouse cerebellar granule neurons. 3. Marked DNA damage and apoptotic nuclear condensation and fragmentation were detected within several hours of exposure to dopamine. An associated marked threefold increase in p53 phosphorylation was observed within this time window. Using a temperature-sensitive p53 activation system in leukemia LTR6 cells, were found that p53 inactivation dramatically attenuated dopamine toxicity. 4. We therefore conclude that DNA damage and p53 activation may have a role in mediating dopamine-induced apoptosis. Modulation of the p53 system may therefore have a protective role against the toxicity of this endogenous neurotransmitter and associated oxidative stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...