ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-12-02
    Description: Magmatic outgassing of volatiles from Earth's interior probably played a critical part in determining the composition of the earliest atmosphere, more than 4,000 million years (Myr) ago. Given an elemental inventory of hydrogen, carbon, nitrogen, oxygen and sulphur, the identity of molecular species in gaseous volcanic emanations depends critically on the pressure (fugacity) of oxygen. Reduced melts having oxygen fugacities close to that defined by the iron-wustite buffer would yield volatile species such as CH(4), H(2), H(2)S, NH(3) and CO, whereas melts close to the fayalite-magnetite-quartz buffer would be similar to present-day conditions and would be dominated by H(2)O, CO(2), SO(2) and N(2) (refs 1-4). Direct constraints on the oxidation state of terrestrial magmas before 3,850 Myr before present (that is, the Hadean eon) are tenuous because the rock record is sparse or absent. Samples from this earliest period of Earth's history are limited to igneous detrital zircons that pre-date the known rock record, with ages approaching approximately 4,400 Myr (refs 5-8). Here we report a redox-sensitive calibration to determine the oxidation state of Hadean magmatic melts that is based on the incorporation of cerium into zircon crystals. We find that the melts have average oxygen fugacities that are consistent with an oxidation state defined by the fayalite-magnetite-quartz buffer, similar to present-day conditions. Moreover, selected Hadean zircons (having chemical characteristics consistent with crystallization specifically from mantle-derived melts) suggest oxygen fugacities similar to those of Archaean and present-day mantle-derived lavas as early as approximately 4,350 Myr before present. These results suggest that outgassing of Earth's interior later than approximately 200 Myr into the history of Solar System formation would not have resulted in a reducing atmosphere.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Trail, Dustin -- Watson, E Bruce -- Tailby, Nicholas D -- England -- Nature. 2011 Nov 30;480(7375):79-82. doi: 10.1038/nature10655.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA. traild@rpi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22129728" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/*chemistry ; *Earth (Planet) ; Oxidation-Reduction ; *Volcanic Eruptions
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 197 (1963), S. 548-550 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] WITH few exceptions the rocks so far described from the East Antarctic Shield are high-grade meta-morphics, predominantly gneisses, granites and granulites, in the granulite or the almandine amphibolite facies of metamorphism as defined by Fyfe, Turner, and Ver-hoogen1. Small exposures of low-grade ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-09-01
    Print ISSN: 0016-7037
    Electronic ISSN: 1872-9533
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1963-02-01
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-12-22
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-02-01
    Print ISSN: 2410-339X
    Electronic ISSN: 2410-3403
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-20
    Description: The purpose of this project is to explore the mobility, mixing, and possible clumping of Pb isotopes during laboratory impact shock experiments. Impact events are a common planetary occurrence and their effect on istotope systematics and subsequent geochronology is not fully understood. By artificially shocking mixtures of zircon and sanidine and investigating the sample products, it may be possible to understand if and how Pb is mobilized during impact shock. Isotopes of Pb are the final daughter products of the decay chains of 238U, 235U and 232Th and therefore understanding how mobile the daughter product is during impact events could have consequences for dating impact events. These investigations will also reveal if Pb isotopes can be mixed between minerals
    Keywords: Metals and Metallic Materials
    Type: JSC-E-DAA-TN64968 , Lunar and Planetary Science Conference; Mar 18, 2019 - Mar 22, 2019; Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-27
    Description: The purpose of this project is to explore the mobility, mixing, and possible clumping of Pb isotopes during laboratory impact shock experiments. Impact events are a common planetary occurrence and their effect on istotope systematics and subsequent geochronology is not fully understood. By artificially shocking mixtures of zircon and sanidine and investigating the sample products, it may be possible to understand if and how Pb is mobilized during impact shock. Isotopes of Pb are the final daughter products of the decay chains of 238U, 235U and 232Th and therefore understanding how mobile the daughter product is during impact events could have consequences for dating impact events. These investigations will also reveal if Pb isotopes can be mixed between minerals.
    Keywords: Metals and Metallic Materials
    Type: LPI Contrib. No. 2132 , JSC-E-DAA-TN67947 , Lunar and Planetary Science Conference (LPSC 2019); 18ý22 Mar. 2019; Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-10
    Description: The geological record is the only direct source of information regarding physical/chemical processes that may have ultimately been responsible for the origin of life. Known terrestrial rocks have ages that span from present day to approx. 4.0 Ga. This leaves a time gap of more than 500 Myr between lunar formation, and preservation of the oldest terrestrial crust. What were planetary conditions like wherein the prebiotic chemistry leading to life took place? The recent discovery of up to 4.37 Ga detrital zircons from Western Australia represents the only tangible record of the time period termed the Hadean Eon (4.5-4.0 Ga). Knowledge of the paragenesis of the oldest zircons potentially contributes information regarding the origin of the atmosphere, hydrosphere, continental lithosphere and the potential for life on the Hadean Earth.
    Keywords: Exobiology
    Type: Lunar and Planetary Science XXXV: Terrestrial Planets; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The terrestrial planets and moons of our solar system have differentiated over a range of oxygen fugacity conditions. Basalts formed from magmas on the Earth cover a range of more oxidized states (from approximately IW (iron wustite) plus 2 to approximately FMQ (fayalite-magnetite-quartz) plus 3) than crustal rocks from Mars (IW to approximately IW plus 3), and basalts from the Moon are more reduced than both, ranging from IW to IW minus 2. The small body Vesta differentiated around IW minus 4. Characterization of redox sensitive elements' diffusivities will offer insight into behavior of these elements as a function of f (fugacity of) O2 for these planetary bodies. Here, we report a systematic study of the diffusion of redox-sensitive elements in basaltic melts with varying oxygen fugacities (fO2) for trace elements, V, Nb, W, Mo, La, Ce, Pr, Sm, Eu, Gd, Ta, and W. Since fO2 is an intensive variable that is different for the reservoirs of various planets and moons in our solar system, it is important to characterize how changes in redox states will affect diffusion. We conducted experiments in a piston cylinder device at 1300 degrees Centigrade and 1 gigapascal, at the University of Rochester and NASA Johnson Space Center. We buffered some experiments at Ru-RuO2 (FMQ plus 6.00), and conducted other experiments within either a graphite or Mo capsule, which corresponds to fO2s of either FMQ minus1.2, or FMQ minus 3.00, respectively. Characterizing the diffusivities of redox sensitive elements at different fO2s is important because some elements, like Eu, have varying valence states, such as Eu (sup 2 plus) and Eu (sup 3 plus). Differences in charge and ion radii may lead to differences in diffusivities within silicate melts. This could, lead to formation of a Eu anomaly by diffusion, the magnitude of which may be controlled by the fO2. Characterization of trace element diffusion is also important in understanding trace element fractionation. We found, during the course of our investigation, that not only did the diffusivities of the redox sensitive elements change with fO2, but that the diffusivities of all other analyzed elements also changed. This indicates that not only do changes in valence influence trace elements diffusivities but that the structure of melt may have changed with varying oxygen fugacity, probably due to changes in the speciation of the major element Fe.
    Keywords: Geosciences (General); Inorganic, Organic and Physical Chemistry
    Type: JSC-CN-38887 , Lunar and Planetary Science Conference; Mar 20, 2017 - Mar 24, 2017; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...