ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
  • 1
    Publication Date: 2012-05-04
    Description: Author(s): Yan Li, N. Sinitsyn, D. L. Smith, D. Reuter, A. D. Wieck, D. R. Yakovlev, M. Bayer, and S. A. Crooker The problem of how single central spins interact with a nuclear spin bath is essential for understanding decoherence and relaxation in many quantum systems, yet is highly nontrivial owing to the many-body couplings involved. Different models yield widely varying time scales and dynamical responses (... [Phys. Rev. Lett. 108, 186603] Published Thu May 03, 2012
    Keywords: Condensed Matter: Electronic Properties, etc.
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-01
    Description: We used wide-area surveys over 39 deg 2 by the HerMES ( Herschel Multi-tiered Extragalactic Survey) collaboration, performed with the Herschel Observatory SPIRE multiwavelength camera, to estimate the low-redshift, 0.02 〈  z  〈 0.5, monochromatic luminosity functions (LFs) of galaxies at 250, 350 and 500 μm. Within this redshift interval, we detected 7087 sources in five independent sky areas, ~40 per cent of which have spectroscopic redshifts, while for the remaining objects photometric redshifts were used. The SPIRE LFs in different fields did not show any field-to-field variations beyond the small differences to be expected from cosmic variance. SPIRE flux densities were also combined with Spitzer photometry and multiwavelength archival data to perform a complete spectral energy distribution fitting analysis of SPIRE detected sources to calculate precise k -corrections, as well as the bolometric infrared (IR; 8–1000 μm) LFs and their low- z evolution from a combination of statistical estimators. Integration of the latter prompted us to also compute the local luminosity density and the comoving star formation rate density (SFRD) for our sources, and to compare them with theoretical predictions of galaxy formation models. The LFs show significant and rapid luminosity evolution already at low redshifts, 0.02 〈  z  〈 0.2, with L $_{\text{IR}}^{\ast } \propto (1+z)^{6.0\pm 0.4}$ and $\Phi _{\text{IR}}^{\ast } \propto (1+z)^{-2.1\pm 0.4}$ , L $_{250}^{\ast } \propto (1+z)^{5.3\pm 0.2}$ and $\Phi _{250}^{\ast } \propto (1+z)^{-0.6\pm 0.4}$ estimated using the IR bolometric and the 250 μm LFs, respectively. Converting our IR LD estimate into an SFRD assuming a standard Salpeter initial mass function and including the unobscured contribution based on the UV dust-uncorrected emission from local galaxies, we estimate an SFRD scaling of SFRD 0  + 0.08 z , where SFRD 0 ~= (1.9 ± 0.03)  x  10 –2 [M Mpc –3 ] is our total SFRD estimate at z  ~ 0.02.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-02-02
    Description: Journal of the American Chemical Society DOI: 10.1021/jacs.5b10728
    Print ISSN: 0002-7863
    Electronic ISSN: 1520-5126
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-10-18
    Description: We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (Δ I / I  ∼ 11%) than at the low-energy red end (∼4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1999-07-27
    Description: Genetic selections were used to find peptides that inhibit biological pathways in budding yeast. The peptides were presented inside cells as peptamers, surface loops on a highly expressed and biologically inert carrier protein, a catalytically inactive derivative of staphylococcal nuclease. Peptamers that inhibited the pheromone signaling pathway, transcriptional silencing, and the spindle checkpoint were isolated. Putative targets for the inhibitors were identified by a combination of two-hybrid analysis and genetic dissection of the target pathways. This analysis identified Ydr517w as a component of the spindle checkpoint and reinforced earlier indications that Ste50 has both positive and negative roles in pheromone signaling. Analysis of transcript arrays showed that the peptamers were highly specific in their effects, which suggests that they may be useful reagents in organisms that lack sophisticated genetics as well as for identifying components of existing biological pathways that are potential targets for drug discovery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Norman, T C -- Smith, D L -- Sorger, P K -- Drees, B L -- O'Rourke, S M -- Hughes, T R -- Roberts, C J -- Friend, S H -- Fields, S -- Murray, A W -- P41-RR11823/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 23;285(5427):591-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of California, San Francisco, CA 94143-0444, USA. tnorman@microbia.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10417390" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Fungal Proteins/metabolism ; G1 Phase ; Galactose/metabolism ; Lipoproteins/metabolism ; Micrococcal Nuclease ; Mitosis ; Molecular Sequence Data ; Peptide Library ; Peptides/genetics/metabolism/*pharmacology ; Pheromones/*metabolism ; Protein Binding ; Protein-Serine-Threonine Kinases ; Protein-Tyrosine Kinases ; Saccharomyces cerevisiae/cytology/genetics/*metabolism ; *Saccharomyces cerevisiae Proteins ; *Selection, Genetic ; *Signal Transduction ; Spindle Apparatus/drug effects/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-12-10
    Description: The widespread reorganization of cellular architecture in mitosis is achieved through extensive protein phosphorylation, driven by the coordinated activation of a mitotic kinase network and repression of counteracting phosphatases. Phosphatase activity must subsequently be restored to promote mitotic exit. Although Cdc14 phosphatase drives this reversal in budding yeast, protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) activities have each been independently linked to mitotic exit control in other eukaryotes. Here we describe a mitotic phosphatase relay in which PP1 reactivation is required for the reactivation of both PP2A-B55 and PP2A-B56 to coordinate mitotic progression and exit in fission yeast. The staged recruitment of PP1 (the Dis2 isoform) to the regulatory subunits of the PP2A-B55 and PP2A-B56 (B55 also known as Pab1; B56 also known as Par1) holoenzymes sequentially activates each phosphatase. The pathway is blocked in early mitosis because the Cdk1-cyclin B kinase (Cdk1 also known as Cdc2) inhibits PP1 activity, but declining cyclin B levels later in mitosis permit PP1 to auto-reactivate. PP1 first reactivates PP2A-B55; this enables PP2A-B55 in turn to promote the reactivation of PP2A-B56 by dephosphorylating a PP1-docking site in PP2A-B56, thereby promoting the recruitment of PP1. PP1 recruitment to human, mitotic PP2A-B56 holoenzymes and the sequences of these conserved PP1-docking motifs suggest that PP1 regulates PP2A-B55 and PP2A-B56 activities in a variety of signalling contexts throughout eukaryotes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338534/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338534/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grallert, Agnes -- Boke, Elvan -- Hagting, Anja -- Hodgson, Ben -- Connolly, Yvonne -- Griffiths, John R -- Smith, Duncan L -- Pines, Jonathon -- Hagan, Iain M -- 092096/Wellcome Trust/United Kingdom -- A13678/Cancer Research UK/United Kingdom -- A16406/Cancer Research UK/United Kingdom -- C147/A16406/Cancer Research UK/United Kingdom -- C29/A13678/Cancer Research UK/United Kingdom -- England -- Nature. 2015 Jan 1;517(7532):94-8. doi: 10.1038/nature14019. Epub 2014 Dec 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Division Group, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK. ; The Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QN, UK. ; Biological Mass Spectrometry, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25487150" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; CDC2 Protein Kinase/metabolism ; Chromosome Segregation ; Conserved Sequence ; Cyclin B/metabolism ; Enzyme Activation ; HeLa Cells ; Holoenzymes/metabolism ; Humans ; Isoenzymes/metabolism ; *Mitosis ; Molecular Sequence Data ; Phosphorylation ; Protein Phosphatase 1/*metabolism ; Protein Phosphatase 2/chemistry/*metabolism ; Protein Subunits/chemistry/metabolism ; Schizosaccharomyces/*cytology/*enzymology ; Schizosaccharomyces pombe Proteins/chemistry/metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-10-16
    Description: Human movements contribute to the transmission of malaria on spatial scales that exceed the limits of mosquito dispersal. Identifying the sources and sinks of imported infections due to human travel and locating high-risk sites of parasite importation could greatly improve malaria control programs. Here, we use spatially explicit mobile phone data and malaria prevalence information from Kenya to identify the dynamics of human carriers that drive parasite importation between regions. Our analysis identifies importation routes that contribute to malaria epidemiology on regional spatial scales.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675794/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675794/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wesolowski, Amy -- Eagle, Nathan -- Tatem, Andrew J -- Smith, David L -- Noor, Abdisalan M -- Snow, Robert W -- Buckee, Caroline O -- 079080/Wellcome Trust/United Kingdom -- 092654/Wellcome Trust/United Kingdom -- 095127/Wellcome Trust/United Kingdom -- 1U54GM088558/GM/NIGMS NIH HHS/ -- U19 AI089674/AI/NIAID NIH HHS/ -- U19AI089674/AI/NIAID NIH HHS/ -- U54 GM088558/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Oct 12;338(6104):267-70. doi: 10.1126/science.1223467.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA 15221, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23066082" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Phones ; Communicable Disease Control ; Culicidae/*parasitology ; Humans ; Kenya/epidemiology ; Malaria, Falciparum/*embryology/prevention & control/*transmission ; *Plasmodium falciparum ; Prevalence ; Travel/*statistics & numerical data
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-04-13
    Description: The reactivation of latent human cytomegalovirus (HCMV) infection after transplantation is associated with high morbidity and mortality. In vivo, myeloid cells and their progenitors are an important site of HCMV latency, whose establishment and/or maintenance require expression of the viral transcript UL138. Using stable isotope labeling by amino acids in cell culture-based mass spectrometry, we found a dramatic UL138-mediated loss of cell surface multidrug resistance-associated protein-1 (MRP1) and the reduction of substrate export by this transporter. Latency-associated loss of MRP1 and accumulation of the cytotoxic drug vincristine, an MRP1 substrate, depleted virus from naturally latent CD14(+) and CD34(+) progenitors, all of which are in vivo sites of latency. The UL138-mediated loss of MRP1 provides a marker for detecting latent HCMV infection and a therapeutic target for eliminating latently infected cells before transplantation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683642/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683642/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weekes, Michael P -- Tan, Shireen Y L -- Poole, Emma -- Talbot, Suzanne -- Antrobus, Robin -- Smith, Duncan L -- Montag, Christina -- Gygi, Steven P -- Sinclair, John H -- Lehner, Paul J -- 084957/Wellcome Trust/United Kingdom -- 084957/Z/08/Z/Wellcome Trust/United Kingdom -- 093966/Wellcome Trust/United Kingdom -- 093966/Z/10/Z/Wellcome Trust/United Kingdom -- 100140/Wellcome Trust/United Kingdom -- G0701279/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2013 Apr 12;340(6129):199-202. doi: 10.1126/science.1235047.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23580527" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD34/analysis ; Cell Line, Tumor ; Cytomegalovirus/genetics/*physiology ; Cytomegalovirus Infections/*metabolism/*virology ; Dendritic Cells/physiology ; Down-Regulation ; Humans ; Lysosomes/metabolism ; Monocyte-Macrophage Precursor Cells/metabolism/virology ; Monocytes/metabolism/virology ; Multidrug Resistance-Associated Proteins/genetics/*metabolism ; Vincristine/metabolism/pharmacology ; Viral Proteins/*metabolism ; *Virus Latency
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-02-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chiyaka, C -- Tatem, A J -- Cohen, J M -- Gething, P W -- Johnston, G -- Gosling, R -- Laxminarayan, R -- Hay, S I -- Smith, D L -- 095066/Wellcome Trust/United Kingdom -- MR/K00669X/1/Medical Research Council/United Kingdom -- U19 AI089674/AI/NIAID NIH HHS/ -- U19AI089674/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 22;339(6122):909-10. doi: 10.1126/science.1229509.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23430640" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Reproduction Number ; Culicidae ; *Disease Eradication ; Global Health ; *Health Policy ; Humans ; Insect Vectors ; Malaria/*prevention & control/transmission ; Mosquito Control
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1998-03-07
    Description: The spindle checkpoint regulates the cell division cycle by keeping cells with defective spindles from leaving mitosis. In the two-hybrid system, three proteins that are components of the checkpoint, Mad1, Mad2, and Mad3, were shown to interact with Cdc20, a protein required for exit from mitosis. Mad2 and Mad3 coprecipitated with Cdc20 at all stages of the cell cycle. The binding of Mad2 depended on Mad1 and that of Mad3 on Mad1 and Mad2. Overexpression of Cdc20 allowed cells with a depolymerized spindle or damaged DNA to leave mitosis but did not overcome the arrest caused by unreplicated DNA. Mutants in Cdc20 that were resistant to the spindle checkpoint no longer bound Mad proteins, suggesting that Cdc20 is the target of the spindle checkpoint.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hwang, L H -- Lau, L F -- Smith, D L -- Mistrot, C A -- Hardwick, K G -- Hwang, E S -- Amon, A -- Murray, A W -- New York, N.Y. -- Science. 1998 Feb 13;279(5353):1041-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of California at San Francisco, San Francisco, CA 94143-0444, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9461437" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anaphase ; Anaphase-Promoting Complex-Cyclosome ; Cadherins ; Calcium-Binding Proteins/metabolism ; *Carrier Proteins ; Cdc20 Proteins ; Cdh1 Proteins ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; DNA Damage ; DNA Replication ; Fungal Proteins/chemistry/*metabolism ; Ligases/metabolism ; Mad2 Proteins ; *Mitosis ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/metabolism ; Phosphoproteins/metabolism ; *Repressor Proteins ; Saccharomyces cerevisiae/*cytology/*metabolism ; *Saccharomyces cerevisiae Proteins ; Spindle Apparatus/*metabolism ; *Ubiquitin-Protein Ligase Complexes ; Ubiquitin-Protein Ligases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...