ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-04-18
    Description: Chromatin influences gene expression by restricting access of DNA binding proteins to their cognate sites in the genome. Large-scale characterization of nucleosome positioning in Saccharomyces cerevisiae has revealed a stereotyped promoter organization in which a nucleosome-free region (NFR) is present within several hundred base pairs upstream of the translation start site. Many transcription factors bind within NFRs and nucleate chromatin remodelling events which then expose other cis-regulatory elements. However, it is not clear how transcription-factor binding and chromatin influence quantitative attributes of gene expression. Here we show that nucleosomes function largely to decouple the threshold of induction from dynamic range. With a series of variants of one promoter, we establish that the affinity of exposed binding sites is a primary determinant of the level of physiological stimulus necessary for substantial gene activation, and sites located within nucleosomal regions serve to scale expression once chromatin is remodelled. Furthermore, we find that the S. cerevisiae phosphate response (PHO) pathway exploits these promoter designs to tailor gene expression to different environmental phosphate levels. Our results suggest that the interplay of chromatin and binding-site affinity provides a mechanism for fine-tuning responses to the same cellular state. Moreover, these findings may be a starting point for more detailed models of eukaryotic transcriptional control.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2435410/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2435410/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lam, Felix H -- Steger, David J -- O'Shea, Erin K -- R01 GM051377/GM/NIGMS NIH HHS/ -- R01 GM051377-15/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 May 8;453(7192):246-50. doi: 10.1038/nature06867. Epub 2008 Apr 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Faculty of Arts and Sciences Center for Systems Biology, Harvard University, 7 Divinity Avenue, Bauer 307, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18418379" target="_blank"〉PubMed〈/a〉
    Keywords: Chromatin/*genetics/*metabolism ; DNA-Binding Proteins/genetics ; *Gene Expression Regulation, Fungal ; Genes, Fungal/genetics ; Genes, Reporter/genetics ; Models, Genetic ; Nucleosomes/genetics/metabolism ; Peptide Chain Initiation, Translational ; Phosphates/pharmacology ; Promoter Regions, Genetic/*genetics ; Saccharomyces cerevisiae/*genetics ; Saccharomyces cerevisiae Proteins/genetics ; Transcription Factors/genetics ; Transcriptional Activation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-11-16
    Description: Chromatin remodeling is required for efficient transcription of eukaryotic genes. In a genetic selection for budding yeast mutants that were defective in induction of the phosphate-responsive PHO5 gene, we identified mutations in ARG82/IPK2, which encodes a nuclear inositol polyphosphate kinase. In arg82 mutant strains, remodeling of PHO5 promoter chromatin is impaired, and the adenosine triphosphate-dependent chromatin-remodeling complexes SWI/SNF and INO80 are not efficiently recruited to phosphate-responsive promoters. These results suggest a role for the small molecule inositol polyphosphate in the regulation of chromatin remodeling and transcription.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1458531/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1458531/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steger, David J -- Haswell, Elizabeth S -- Miller, Aimee L -- Wente, Susan R -- O'Shea, Erin K -- GM51219/GM/NIGMS NIH HHS/ -- GM51377/GM/NIGMS NIH HHS/ -- R01 GM051377/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jan 3;299(5603):114-6. Epub 2002 Nov 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0448, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12434012" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; Chromatin/*metabolism ; DNA-Binding Proteins/metabolism ; Fungal Proteins/genetics/metabolism ; Gene Expression Regulation, Fungal ; Inositol Phosphates/*metabolism ; Mutation ; *Nuclear Proteins ; Phosphate Transport Proteins/*genetics/metabolism ; Phosphotransferases (Alcohol Group Acceptor)/genetics/metabolism ; Point Mutation ; Promoter Regions, Genetic ; Protein Binding ; Proton-Phosphate Symporters/genetics/metabolism ; *Saccharomyces cerevisiae Proteins ; Saccharomycetales/genetics/*metabolism ; Transcription Factors/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-06-06
    Description: Circadian and metabolic physiology are intricately intertwined, as illustrated by Rev-erbalpha, a transcription factor (TF) that functions both as a core repressive component of the cell-autonomous clock and as a regulator of metabolic genes. Here, we show that Rev-erbalpha modulates the clock and metabolism by different genomic mechanisms. Clock control requires Rev-erbalpha to bind directly to the genome at its cognate sites, where it competes with activating ROR TFs. By contrast, Rev-erbalpha regulates metabolic genes primarily by recruiting the HDAC3 co-repressor to sites to which it is tethered by cell type-specific transcription factors. Thus, direct competition between Rev-erbalpha and ROR TFs provides a universal mechanism for self-sustained control of the molecular clock across all tissues, whereas Rev-erbalpha uses lineage-determining factors to convey a tissue-specific epigenomic rhythm that regulates metabolism tailored to the specific need of that tissue.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4613749/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4613749/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Yuxiang -- Fang, Bin -- Emmett, Matthew J -- Damle, Manashree -- Sun, Zheng -- Feng, Dan -- Armour, Sean M -- Remsberg, Jarrett R -- Jager, Jennifer -- Soccio, Raymond E -- Steger, David J -- Lazar, Mitchell A -- F30 DK104513/DK/NIDDK NIH HHS/ -- F32 DK102284/DK/NIDDK NIH HHS/ -- K08 DK094968/DK/NIDDK NIH HHS/ -- P30 DK019525/DK/NIDDK NIH HHS/ -- P30 DK050306/DK/NIDDK NIH HHS/ -- P30 DK19525/DK/NIDDK NIH HHS/ -- R00 DK099443/DK/NIDDK NIH HHS/ -- R01 DK045586/DK/NIDDK NIH HHS/ -- R01 DK098542/DK/NIDDK NIH HHS/ -- R01 DK45586/DK/NIDDK NIH HHS/ -- T32 GM0008275/GM/NIGMS NIH HHS/ -- T32 GM008275/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jun 26;348(6242):1488-92. doi: 10.1126/science.aab3021. Epub 2015 Jun 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Molecular and Cellular Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA. ; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. lazar@mail.med.upenn.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26044300" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CLOCK Proteins/*genetics ; Circadian Clocks/*genetics ; Circadian Rhythm/*genetics ; *Gene Expression Regulation ; Hepatocyte Nuclear Factor 6/metabolism ; Histone Deacetylases/*metabolism ; Lipid Metabolism/genetics ; Liver/metabolism ; Male ; Metabolism/*genetics ; Mice, Inbred C57BL ; Mice, Knockout ; Nuclear Receptor Subfamily 1, Group D, Member 1/genetics/*metabolism ; Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism ; Organ Specificity ; Protein Binding ; Tissue Distribution
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-09-13
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 1998-10-27
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-09-28
    Description: The identification of factors that define adipocyte precursor potential has important implications for obesity. Preadipocytes are fibroblastoid cells committed to becoming round lipid-laden adipocytes. In vitro, this differentiation process is facilitated by confluency, followed by adipogenic stimuli. During adipogenesis, a large number of cytostructural genes are repressed before adipocyte gene induction. Here we report that the transcriptional repressor transcription factor 7-like 1 (TCF7L1) binds and directly regulates the expression of cell structure genes. Depletion of TCF7L1 inhibits differentiation, because TCF7L1 indirectly induces the adipogenic transcription factor peroxisome proliferator-activated receptor γ in a manner that can be replaced by inhibition of myosin II activity. TCF7L1 is induced by cell contact in adipogenic cell lines, and ectopic expression of TCF7L1 alleviates the confluency requirement for adipocytic differentiation of precursor cells. In contrast, TCF7L1 is not induced during confluency of non-adipogenic fibroblasts, and, remarkably, forced expression of TCF7L1 is sufficient to commit non-adipogenic fibroblasts to an adipogenic fate. These results establish TCF7L1 as a transcriptional hub coordinating cell–cell contact with the transcriptional repression required for adipogenic competency.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-03-16
    Description: Mammalian physiology exhibits 24-hour cyclicity due to circadian rhythms of gene expression controlled by transcription factors that constitute molecular clocks. Core clock transcription factors bind to the genome at enhancer sequences to regulate circadian gene expression, but not all binding sites are equally functional. We found that in mice, circadian gene expression in the liver is controlled by rhythmic chromatin interactions between enhancers and promoters. Rev-erbα, a core repressive transcription factor of the clock, opposes functional loop formation between Rev-erbα–regulated enhancers and circadian target gene promoters by recruitment of the NCoR-HDAC3 co-repressor complex, histone deacetylation, and eviction of the elongation factor BRD4 and the looping factor MED1. Thus, a repressive arm of the molecular clock operates by rhythmically modulating chromatin loops to control circadian gene transcription.
    Keywords: Molecular Biology, Physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...