ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2003-07-12
    Description: We report the use of genetically engineered cells in a pathogen identification sensor. This sensor uses B lymphocytes that have been engineered to emit light within seconds of exposure to specific bacteria and viruses. We demonstrated rapid screening of relevant samples and identification of a variety of pathogens at very low levels. Because of its speed, sensitivity, and specificity, this pathogen identification technology could prove useful for medical diagnostics, biowarfare defense, food- and water-quality monitoring, and other applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rider, Todd H -- Petrovick, Martha S -- Nargi, Frances E -- Harper, James D -- Schwoebel, Eric D -- Mathews, Richard H -- Blanchard, David J -- Bortolin, Laura T -- Young, Albert M -- Chen, Jianzhu -- Hollis, Mark A -- New York, N.Y. -- Science. 2003 Jul 11;301(5630):213-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA 02420, USA. thor@ll.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12855808" target="_blank"〉PubMed〈/a〉
    Keywords: Aequorin/biosynthesis ; Antibodies, Bacterial/immunology ; Antibodies, Viral/immunology ; *B-Lymphocytes/immunology ; Bacillus anthracis/immunology/isolation & purification ; Bacteria/immunology/*isolation & purification ; *Bacteriological Techniques ; *Biosensing Techniques ; Cell Line ; Colony Count, Microbial ; Encephalitis Virus, Venezuelan Equine/immunology/isolation & purification ; Escherichia coli O157/immunology/isolation & purification ; Foot-and-Mouth Disease Virus/immunology/isolation & purification ; Immunoglobulin Variable Region/immunology ; Light ; Receptors, Antigen, B-Cell/immunology ; Sensitivity and Specificity ; Time Factors ; Transfection ; Viruses/immunology/*isolation & purification ; Yersinia pestis/immunology/isolation & purification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-09-08
    Description: Extended laboratory culture and antimicrobial susceptibility testing timelines hinder rapid species identification and susceptibility profiling of bacterial pathogens associated with bovine respiratory disease, the most prevalent cause of cattle mortality in the United States. Whole-genome sequencing offers a culture-independent alternative to current bacterial identification methods, but requires a library of bacterial reference genomes for comparison. To contribute new bacterial genome assemblies and evaluate genetic diversity and variation in antimicrobial resistance genotypes, whole-genome sequencing was performed on bovine respiratory disease–associated bacterial isolates ( Histophilus somni , Mycoplasma bovis , Mannheimia haemolytica , and Pasteurella multocida ) from dairy and beef cattle. One hundred genomically distinct assemblies were added to the NCBI database, doubling the available genomic sequences for these four species. Computer-based methods identified 11 predicted antimicrobial resistance genes in three species, with none being detected in M. bovis . While computer-based analysis can identify antibiotic resistance genes within whole-genome sequences (genotype), it may not predict the actual antimicrobial resistance observed in a living organism (phenotype). Antimicrobial susceptibility testing on 64 H. somni , M. haemolytica , and P. multocida isolates had an overall concordance rate between genotype and phenotypic resistance to the associated class of antimicrobials of 72.7% ( P 〈 0.001), showing substantial discordance. Concordance rates varied greatly among different antimicrobial, antibiotic resistance gene, and bacterial species combinations. This suggests that antimicrobial susceptibility phenotypes are needed to complement genomically predicted antibiotic resistance gene genotypes to better understand how the presence of antibiotic resistance genes within a given bacterial species could potentially impact optimal bovine respiratory disease treatment and morbidity/mortality outcomes.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...