ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2014-12-19
    Description: Magnetocaloric effect is the phenomenon that temperature change of a magnetic material is induced by application of a magnetic field. This effect can be applied to environmentally-benign magnetic refrigeration technology. Here we show a key role of magnetic-field-induced structural instability in enhancing the magnetocaloric effect for MnCo1−xZnxGe alloys (x = 0–0.05). The increase in x rapidly reduces the martensitic transition temperature while keeping the ferromagnetic transition around room temperature. Fine tuning of x around x = 0.03 leads to the concomitant structural and ferromagnetic transition in a cooling process, giving rise to enhanced magnetocaloric effect as well as magnetic-field-induced structural transition. Analyses of the structural phase diagrams in the T-H plane in terms of Landau free-energy phenomenology accounts for the characteristic x-dependence of the observed magnetocaloric effect, pointing to the importance of the magnetostructural coupling for the design of high-performance magnetocalorics. Scientific Reports 4 doi: 10.1038/srep07544
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...