ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: 〈span〉〈div〉Abstract〈/div〉Fe(II) only occupies octahedral sites in phyllosilicates, whereas Fe(III) can occupy both octahedral and tetrahedral sites. The controls on Fe(III) distribution between tetrahedral and octahedral sites have been a matter of great interest to understand the interplay between formation environment (Fe abundance, redox conditions) and crystal-chemical factors (stability of the crystal lattice) during crystallization of Fe-phyllosilicates. Here, for the first time, we present a model of Fe(III) distribution in 2:1 phyllosilicates. We investigated 21 samples of 2:1 phyllosilicates of submarine hydrothermal origin using XRD, chemical analysis, and Mössbauer spectroscopy (and other supporting techniques not presented here). An additional data set of 49 analyses of 2:1 phyllosilicates from the literature was also used. Overall, the data cover a wide range of dioctahedral and trioctahedral phyllosilicates, including end-member minerals and interstratified phases. Dioctahedral phyllosilicates have a steric control whereby tetrahedral Fe(III) is only allowed if at least five out of six octahedral atoms are larger than Al (typically Fe[III], Fe[II], Mg) that produces an expanded structure where tetrahedral sites can accommodate Fe(III). After this threshold, further Fe(III) atoms occupy tetrahedral sites preferentially (~73% of further Fe[III] atoms) over octahedral sites. In trioctahedral 2:1 phyllosilicates there is no steric hindrance to tetrahedral Fe(III) because the crystal dimensions are such that tetrahedral sites can accommodate Fe(III). On average, Fe(III) enters tetrahedral and octahedral sites in similar proportion, and the only apparent control on tetrahedral Fe(III) abundance is Fe(III) availability during crystallization. This model allows to predict Fe(III) distribution between structural sites, provides an avenue for further exploration of the thermodynamic stability of phyllosilicates using cationic size, and provides a tool to better describe stability/reactivity of Fe-rich phyllosilicates, the most reactive of phyllosilicates and very relevant in geochemical and biological processes.〈/span〉
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-10-27
    Description: Transformation of kaolinite to dickite is a common diagenetic reaction. The present report is part of a wider study to investigate the pathways of this polytype change. Fourier-transform infrared spectroscopy (FTIR) was used to attempt quantification of the relative proportions of kaolinite and dickite, validated by X-ray diffraction (XRD) results, in order to link mineral and structural features during the mineralogical changes. A group of kaolinite and dickite samples was investigated: 13 samples from the Frøy and Rind oil fields (North Sea), three kaolinite specimens with different crystal order and particle size (KGa-2, kaolinite API 17, Keokuk kaolinite), and two dickite-rich samples (Natural History Museum collection). Six FTIR spectral features were analyzed: (1) intensity ratio of the minima at 3675 and 3635 cm –1 ; (2) position of the band at ~1115 cm –1 ; (3) difference between the frequency of the bands at ~1030 and ~1000 cm –1 ; (4) intensity ratio of the bands generating shoulders at ~922 and ~900 cm –1 ; (5) position of the band at ~370 cm –1 ; and (6) intensity of the band at ~268 cm –1 . Correlation of the features above with polytype relative proportions derived from XRD showed non-linear behavior, with maximum curvature at the dickite end, which precludes kaolinite-dickite quantification. Increasing kaolin particle size is known to cause decreased intensity of the FTIR spectra. A model was developed to test whether this effect is consistent with the non-linear progression of the IR features. The relative intensity of kaolinite and dickite IR features were calculated in a series of kaolinite-to-dickite transformations, where the size of particles increases with dickite proportion, and where dickite-dominated particles reach a larger size than kaolinite-dominated particles. The results indicated that the differential particle size increase is possibly the cause of the lack of linearity between IR- and XRD-measured dickite proportions.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-02-13
    Description: Biological activity plays a substantial role in the geochemistry of the Earth’s surface. Particularly interesting are effects on clay formation because clays are abundant and have high surface-to-volume ratio, resulting in clays making up a large fraction of the overall mineral-fluid interface and having an effective control of mineral reactions. Thus, biological control on clay composition would affect element budget globally and the mineralogy of subsequent diagenetic processes. Biological acceleration of clay production would result in enhanced clay control of mineral reactions and faster organic C sequestration, by adsorption on clay minerals, with implications for the C and related cycles. We investigated the combined effect of microbial activity and water chemistry on the composition of neoformed clay by reacting volcanic glass with natural waters covering a large composition range (fresh water from a lake and a spring, seawater, and hypersaline water). The microbes (bacteria, fungi, and algae) were totally or partially identified using molecular and microscopy techniques. The solid alteration products were analyzed using cryo-SEM to investigate the mineral-microbe interface and TEM-AEM to study the composition of the neoformed clay. The solution chemistry was also investigated. We found that clay composition was controlled mainly by glass chemistry, rather than biological activity, through a mechanism of in situ transformation. The resulting clay was Al-rich (dioctahedral composition). In one case (inorganic experiment, freshwater lake), the specific inorganic conditions of pH and Mg and Si concentration promoted formation of Mg-rich (trioctahedral clay). Microbes, however, did influence clay composition by confining glass grains in biofilms where water chemistry is significantly different from the bulk solution. Alteration in such conditions generated significant amounts of trioctahedral, Mg-rich clay in the hypersaline water experiment, whereas it favored production of dioctahedral, Al-rich clay in the freshwater lake experiment. It is thus demonstrated that biofilms can exert an effective control on clay mineralogy.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-02
    Description: With the arrival of Curiosity on Mars, the MSL has started its ground validation of some of the phyllosilicate characterization carried out with remote sensing near-IR spectroscopy from orbital instruments. However, given the limited range of action of the rover, phyllosilicate identification and characterization will have to rely mainly on orbital near-IR data. Investigation of Earth analogs can greatly assist interpretation of martian spectra and enable more robust analyses. In this contribution, Mg/Fe-rich clays from submarine hydrothermal origin that had been thoroughly characterized previously were investigated with near-IR reflectance spectroscopy. The clays are mixed-layer glauconite-nontronite, talc-nontronite, talc-saponite, and nontronite samples. The hydroxyl bands in the range 2.1–2.35 μm were decomposed into their several individual components to investigate correlations between the octahedral chemistry of the samples and the normalized intensity of several bands. Good correlations were found for the samples of exclusive dioctahedral character (glauconite-nontronite and nontronite), whereas poor or no correlations emerged for the samples with one (talc-nontronite) or two (talc-saponite) trioctahedral layer components, indicating a more complex spectral response. Because these bands analyzed are a combination of the fundamental OH stretching and OH bending vibrations, the response of these fundamental bands to octahedral chemistry was considered. For 2:1 dioctahedral phyllosilicates, Fe and Mg substitution for Al displaces both fundamental bands to lower wavenumbers (longer wavelengths), so that their effect on the position of the combination band is coherent. In contrast, for trioctahedral clays, Al and Fe 3+ substitution of octahedral Mg displaces the OH stretching band to lower wavenumber values, and the OH bending band to higher wavenumber values, resulting in partial or total mutual cancelation of their effects. As a result, clays with near-IR spectra indicating Mg-dominated octahedral compositions may in fact contain abundant Fe and some Al substitution. Thus, remote-sensing near-IR mineralogical and chemical identification of clays on Mars appears relatively straightforward for dioctahedral clay minerals but more problematic for trioctahedral clays, for which it may require a more detailed investigation of their near-IR spectra.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-11-21
    Description: Soil formation occurs through numerous physical and chemical weathering processes acting to alter the parent rock on the Earth’s surface. Samples of surface soils were collected over a range of elevations (2000–3600 m) from profiles directly overlying basaltic to more felsic parent rocks, over a region in NW Ethiopia. The soils were investigated to determine their chemical composition and X-ray diffraction was used to identify and quantify individual mineral phases. The data set was analyzed using non-parametric statistics (Spearman’s Rank and Mann-Whitney U tests) to compare the soils forming over the two parent rocks. Principal component analysis (PCA) was used to identify the mineral alteration assemblage and formation during pedogenesis. The extent of alteration was quantified using several chemical weathering indices (Chemical Index of Alteration = CIA; Chemical Index of Weathering = CIW), including an index calculated by multivariate analyses of the soil chemical composition data (weathering " W " index). Further to this we devised and tested a new weathering index ( W min ) using multivariate analysis of the soil mineralogy, to estimate the extent of weathering and physico-chemical proprieties of the parent rock from which the soil formed. The soils present a fair to advanced stage of alteration, with abundant iron (Fe) oxides (up to 40 wt%) and phyllosilicates (up to 57 wt%), including kaolinite-smectite (K-S) mixed-layer phases. The K-S was composed of either 30–50% kaolinite or 94–98% kaolinite layers. Discrete kaolinite was also present. The bimodal K-S mineralogical composition is likely due to two precursor phases: feldspar for the kaolinite-rich K-S and volcanic glass for the smectite-rich K-S. K-S with intermediate composition (50–94% kaolinite) was rare, due to its instability. Statistical analysis showed significant differences between the chemical compositions of the soils developed on the two different parent volcanic compositions. The soils overlying the more felsic parent rocks were less altered than those overlying the flood basalt. When comparing the weathering indices calculated in this study, we conclude that while the CIA and CIW may be more readily determined, the W and W min indices can elucidate information on the composition of the original rock from which they formed. The W index is more sensitive to certain variables when compared with the newly derived mineralogical W min index; however the W min index takes into account mineral phases within the sample, which provides a more detailed interpretation of weathering rates than chemistry alone. In addition the W min index correlated with meteorological variables, such as elevation (and consequently temperature and precipitation), known to influence the degree of pedogenesis. The W min index can be used to enhance our understanding of the processes that occur during weathering processes to supplement information gained from traditional chemical weathering indices.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Mineralogical Society of Great Britain and Ireland
    Publication Date: 2012-06-01
    Description: Chemical and mineralogical transformations of phyllosilicates are among the most important in diagenetic environments in all types of rocks because they can exert a large control on the processes taking place in such environments and/or provide constraints for the conditions in which phyllosilicate transformation occurred. Dissolution-precipitation and solid-state transformation are usually the two mechanisms proposed for such reactions depending on the crystal-chemical and morphological similarities between parent and neoformed phases together with knowledge of the environmental conditions. These two mechanisms, however, may be at both ends of the spectrum of those operating and many transformations may take place through a mixture of the two mechanisms, generating observable elements that are characteristic of one or the other. In the present literature, the boundaries between the two mechanisms are not clear, mainly because dissolution-precipitation is sometimes defined at nearly atomic scale. It is proposed here that such small-scale processes are considered as a solid-state transformation, and that dissolution-precipitation requires dissolution of entire mineral particles and their dissolved species to pass into the bulk of the solution. Understanding the reaction mechanisms of diagenetic transformations is an important issue because they impinge on geochemical conditions and variables such as cation mobility, rock volume, fabric changes, rock permeability, stable isotope signature and phyllosilicate crystal-chemistry.I propose that, in the lower range temperatures at which clay mineral transformations take place, energy considerations favour solid-state transformation, or reactions that involve the breaking of a limited number of bonds, over dissolution of entire grains and precipitation of crystals of the new phase. Large morphological changes are frequently invoked as evidence for a dissolution-precipitation mechanism but changes in particle shape and size may be achieved by particle rupture, particle welding or by hybrid processes in which dissolution-precipitation plays a minor role.Past and recent studies of phyllosilicate transformations show chemical and structural intermediates indicating a large crystal-chemical versatility, greater than is commonly recognized. These intermediates include tetrahedral sheets of different composition within TOT units (termed polar layers), dioctahedral and trioctahedral domains in the same layer, and 2:1 and 1:1 domains also within the same layers. The existence of such intermediate structures suggests that the reaction mechanisms that generated them are within the realm of the solid-state transformation processes.
    Print ISSN: 0009-8558
    Electronic ISSN: 1471-8030
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-04-02
    Description: The mechanism of kaolinite transformation into dickite has been investigating using 13 samples from the Frøy and Rind oil fields (Broad Fourteens basin, North Sea), 3 kaolinite specimens with different crystal order (KGa-2, Kaolinite API 17, Keokuk kaolinite), and 2 dickite-rich samples (Natural History Museum collection). Detailed analysis of XRD, thermal analysis, and SEM data show that: (1) as dickite content increases, there is also an increase of the crystal order of kaolinite; (2) in dickite-rich specimens kaolinite and dickite have crystals (or XRD-coherent domains) of the same size; (3) there is no specific dehydroxylation temperature for each polytype, rather particle size and crystal order control dehydroxylation temperature independently of polytype; (4) with progressive dickite content, the development of both particle size and the size of the coherent crystal domains within particles is greater in the c direction than in the a - b plane; (5) the growth of defect-free segments in the c direction is not connected with the growth in the a and b directions, as would be expected in crystallization from solution; (6) textural features indicate coalescence of kaolin plates with burial; (7) there is a very weak positive correlation between particle dimensions and relative kaolinite-dickite content. These results are interpreted as resulting from a double reaction taking place in the solid state with burial. Some kaolinite domains grow in size and crystal order while other domains are transformed into dickite. Presumably, also the dickite domains formed early in the transformation grow in crystal order. The transformation into dickite stops at 90–95% dickite because the remaining kaolinite domains are so large and stable that the stability increase produced by the polytype transformation would be negligible.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Mineralogical Society of America
    Publication Date: 2015-04-02
    Description: The Curiosity rover on Mars, landed in 2012, is capable of mineralogical investigation using X-ray diffraction, complementing the abundant infrared remote sensing data already available on clay minerals. We can, however, expect that the in situ X-ray diffraction information will convey a more complex picture than that inferred from infrared spectroscopy alone. CheMin has landed.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018
    Description: 〈span〉〈div〉Abstract〈/div〉Earth analogs are indispensable to investigate mineral assemblages on Mars because they enable detailed analysis of spectroscopic data from Mars and aid environmental interpretation. Samples from four sites in the Iberian Pyrite Belt (El Villar, Calañas, Quebrantahuesos, and Tharsis) were investigated using mineralogical, chemical, and spectroscopic techniques, with a focus on clay minerals and alteration environments. They represent Earth analogs of areas on Mars that underwent acidic alteration. X-ray diffraction and transmittance mid-infrared data indicate that the rocks were subjected to several degrees of acid alteration corresponding to assemblages characterized by the following mixtures: (1) illite, chlorite, interstratified chlorite-vermiculite, kaolinite-smectite, and kaolinite; (2) illite, kaolinite, and alunite; and (3) jarosite and goethite. According to mineral stability data, these three assemblages correspond to pH values 7–5, 5–3, and 〈3, respectively. The lack of goethite in the illite-kaolinitealunite assemblage suggests an alteration in reducing conditions. Illite was progressively dissolved by acidic alteration but is sufficiently resilient not to be diagnostic of the intensity of the alteration. Illite and kaolinite were the two most abundant phyllosilicate minerals observed, and the main reaction involving phyllosilicates was the alteration of illite to kaolinite. Mixed-layer phases appeared mainly in the mildest degree of acid alteration, with few exceptions. This suggests a transition from a mechanism dominated by transformation to a mechanism dominated by dissolution-precipitation as the intensity of the acid alteration increases. Our results highlight the sparse kaolinite-alunite occur-rences on Mars as worthy of specific investigation. Acid alteration on Mars is expected to be patchy and/or consisting of fine alteration rims. Alunite occurrences on Mars in the absence of goethite may indicate an acid alteration in reducing conditions. Kaolinite produced through acid alteration on Mars is expected to exist mainly as an end-member phase of low crystallinity, which would enhance IR absorption and increase its visibility.〈/span〉
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Mineralogical Society of Great Britain and Ireland
    Publication Date: 2017-10-04
    Description: Interest in mineral–microbe interaction has grown enormously over recent decades, providing information in a puzzle-like manner which points towards an ever increasingly intimate relationship between the two; a relationship that can be truly termed co-evolution. Clay minerals play a very central role in this co-evolving system. Some 20 years ago, clay scientists looked at clay mineral–microbe studies as a peripheral interest only. Now, can clay scientists think that they understand the formation of clay minerals throughout geological history if they do not include life in their models? The answer is probably no, but we do not yet know the relative weight of biological and inorganic factors involved in driving clay-mineral formation and transformation. Similarly, microbiologists are missing out important information if they do not investigate the influence and modifications that minerals, particularly clay minerals, have on microbial activity and evolution. This review attempts to describe the several points relating clay minerals and microorganisms that have been discovered so far. The information obtained is still very incomplete and many opportunities exist for clay scientists to help to write the real history of the biosphere.
    Print ISSN: 0009-8558
    Electronic ISSN: 1471-8030
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...