ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2018-06-01
    Description: We present two-dimensional stellar and gaseous kinematics of the inner 0.7 × 1.2 kpc2 of the Seyfert 1.5 galaxy ESO 362-G18, derived from optical (4092–7338 Å) spectra obtained with the GMOS integral field spectrograph on the Gemini South telescope at a spatial resolution of ≈170 pc and spectral resolution of 36 km s−1. ESO 362-G18 is a strongly perturbed galaxy of morphological type Sa or S0/a, with a minor merger approaching along the NE direction. Previous studies have shown that the [O III] emission shows a fan-shaped extension of ≈10′′ to the SE. We detect the [O III] doublet, [N II] and Hα emission lines throughout our field of view. The stellar kinematics is dominated by circular motions in the galaxy plane, with a kinematic position angle of ≈137° and is centred approximately on the continuum peak. The gas kinematics is also dominated by rotation, with kinematic position angles ranging from 122° to 139°, projected velocity amplitudes of the order of 100 km s−1, and a mean velocity dispersion of 100 km s−1. A double-Gaussian fit to the [O III]λ5007 and Hα lines, which have the highest signal to noise ratios of the emission lines, reveal two kinematic components: (1) a component at lower radial velocities which we interpret as gas rotating in the galactic disk; and (2) a component with line of sight velocities 100–250 km s−1 higher than the systemic velocity, interpreted as originating in the outflowing gas within the AGN ionization cone. We estimate a mass outflow rate of 7.4 × 10−2 M⊙ yr−1 in the SE ionization cone (this rate doubles if we assume a biconical configuration), and a mass accretion rate on the supermassive black hole (SMBH) of 2.2 × 10−2 M⊙ yr−1. The total ionized gas mass within ~84 pc of the nucleus is 3.3 × 105 M⊙; infall velocities of ~34 km s−1 in this gas would be required to feed both the outflow and SMBH accretion.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: We describe the STIS autonomous target acquisition capabilities. We also present the results of dedicated tests executed as part of Cycle 7 calibration, following post-launch improvements to the Space Telescope Imaging Spectrograph (STIS) flight software. The residual pointing error from the acquisitions are 〈 0.5 CCD pixels, which is better than preflight estimates. Execution of peakups show clear improvement of target centering for slits of width 0.1 sec or smaller. These results may be used by Guest Observers in planning target acquisitions for their STIS programs.
    Keywords: Astronomy
    Type: The 1997 HST Calibration Workshop with a New Generation of Instruments; 39-46; NASA/TM-97-208141
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...